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Dyadic pattern analysis using longitudinal
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Abstract Understanding the dynamics of interactions between two individuals requires special
conceptual and statistical models. The Actor-Partner Interdependence Model (APIM) is the clas-
sical conceptual framework for standard dyadic designs, capturing the interdependence between
dyad members by identifying the mechanisms of interaction through actor and partner effects. To
analyze the temporal dynamics of dyadic interactions, the longitudinal APIM extends the classic
model, often employing categorical variables to capture behavior. To analyze such data considering
its categorical nature, specific statistical models are required. Markov chain is a powerful approach
considering the longitudinal and categorical aspects of the data. This article describes how to adapt
Markov chains in the categorical longitudinal dyadic case. It additionally offers a tutorial to model
and identify the pattern of interaction using this method for unique case approach to maintain a
simple and focused level of analysis. Codes in R language are provided.
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Introduction

The Actor-Partner Interdependence Model (APIM) has
emerged as a valuable tool for understanding interpersonal
interactions (Kenny et al., 2006). The model provides a
framework for analyzing the mutual influence between in-
dividuals within dyadic relationships. By considering both
actor effects, meaning the influence of an individual on
their own outcome and partner effects, meaning the in-
fluence of one individual on their partner’s outcome, the
APIM offers insights into the dynamics and complexities
of social interactions. Extending the APIM to longitudinal
studies provides a more comprehensive understanding of
how interactions unfold over time. The classic APIM pri-
marily focuses on cross-sectional data, limiting the abil-
ity to capture dynamic processes and changes occurring
within dyads. The longitudinal APIM examines how actor
and partner effects evolve to identify temporal patterns and
gain information about the stability and fluctuations of dy-
namics (Laurenceau & Bolger, 2011). When dealing with

longitudinal data that involve categorical variables, such as
behavioral states or discrete outcomes, employing appro-
priate statistical techniques becomes crucial. For example,
if we want to assess the evolution of the quality of a cou-
ple’s sexual relationship, we can ask them on a daily ba-
sis a question such as Did you have sexual desire yesterday?
The categorical yes or no answer of each partner can be fol-
lowed over time. Markov chains provide a powerful frame-
work for modeling categorical longitudinal data within the
APIM. By characterizing transitions between discrete states
and capturing the inherent dependencies among observa-
tions, Markov chain models offer a flexible and insightful
approach to the analysis of longitudinal APIM data. The
objective of this article is to provide a tutorial which shows
how to use Markov chains in the context of longitudinal
APIM for only one dyad to consider the simplest unit of
analysis. By incorporating Markov chain modeling into the
APIM, we seek to enhance our understanding of the dy-
namic processes occurring within dyads over time. A the-
oretical framework of Markov chains is first presented to
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Figure 1 Classic and dynamic actor-partner interdependence model
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show how to adapt them in the context of dyad design.
Then, the tutorial offers step-by-step guidance on how to
apply this novel method to analyze dyadic data conceptu-
ally modeled by APIM.

The classic Actor-Partner Interdependence Model

In psychology, understanding interpersonal processes,
specifically dyadic interactions, is critical (Kenny & Kashy,
2013). Dyads could be couples, parent-child or siblings.
Data about dyadic interaction is collected through ques-
tionnaires or observations. Analyzing this data allows re-
searchers to study the multilevel structure of interactions,
focusing on individual or dyadic units (Gonzalez & Grif-
fin, 2012). The dyadic data is based on the assumption
of shared elements between dyad members. The aim is
to account for the interdependence between the members
of each pair (Fitzpatrick et al., 2016). This paper uses the
APIM to understand these interactions.

The APIM may be defined as a conceptual model of in-
terpersonal phenomena that accounts for the lack of in-
dependence observed with pairs of individuals (Fitzpatrick
et al., 2016). The model allows the analysis of interper-
sonal processes by assuming actor effects and partner ef-
fects from the point of view of each member of the dyad.
We differentiate between individuals within dyads by ran-
domly assigning them as either the first or second partner.
When the first partner’s point of view is adopted, their ac-
tions are considered as the actor effect, whereas those of
the second partner represent the partner effect. The sit-
uation is reversed when we examine the second partner’s
point of view. This distinction allows us to consider the
unique roles and contributions of each partner within the
dyadic relationship. The original APIM, shown on the left
plot of Figure 1(a), was developed from a static point of
view using numerical scores for the variables of interest
(Kenny & Kashy, 2013). The aim is to analyze the extent
to which the independent variable (X ) of a person influ-
ences their score on the dependent variable (Y ), but also

their partner’s score. For our example, when analyzing the
effect of a woman’s lack of sexual desire on the quality of the
romantic relationship, the woman’s perception of the ro-
mantic relationship quality is the actor effect, whereas the
man’s perception of the romantic relationship quality is the
partner effect. Extensions of the classic APIM are possible
(Kenny et al., 2006). One adaptation is to allow the actor
or partner effect to be different between the members of
the dyad. Conceptually, it implies that the strength of the
influence of one partner on their variable or on their part-
ner’s may be different from one individual to the other. This
means indexing the actor effect (1) and the partner effect
(2) with respect to the member involved. Figure 1(b) rep-
resents this extension. The parameters to be estimated for
the APIM are the actor and partner effects, as well as the
interaction effects. These parameters are estimated using
different statistical methods. The estimation of these pa-
rameters allows us to understand how the interaction takes
place between the two members of the dyad.

Understanding the link between the answers of both
partners is the reason APIM is used to model interaction in
the case of dyadic data. Using the combination of actor and
partner effects, dyadic patterns are created (Fitzpatrick et
al., 2016). The first pattern, called couple oriented, is repre-
sented by a = p. In this pattern, we consider that the score
of a dyad member is as much influenced by the actor effect
as it is by the partner effect. In other words, we assume that
the actor effect is the same as the effect of the partner. The
second pattern, called the contrast pattern or sometimes
the social comparisons pattern, is represented by a +p = 0
or by a = −p. This situation is the opposite of the previ-
ous one. We assume that the effect of one member on their
partner’s score is the opposite of the effect of the other part-
ner on their score. Both patterns can be regrouped under
the actor-partner pattern. The third pattern is called the
actor pattern. In this situation, it is assumed that only the
individual’s score on the independent variable has an influ-
ence on their score on the dependent variable. The fourth

TheQuantitativeMethods forPsychology 2312

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.19.3.p230


¦ 2023 Vol. 19 no. 3

pattern is called the partner pattern. As before, this is the
opposite situation in which one member’s score is only as-
sociated with the score of their partner on the dependent
variable. These situations are summarized as a ̸= 0, p = 0
and a = 0, p ̸= 0, respectively. Obviously, it is also possible
to have a situation without any pattern with both effects
equal to 0. This can be called the independence pattern.
The patterns allow the analysis of dyad members’ respec-
tive influence on the dependent variable.

Categorical longitudinal Actor-Partner Interdependence
Model

The aim of capturing a time dynamic in dyadic interactions
is achieved by using dynamic systems analysis, which con-
siders the temporal evolution of behavioral sequences over
discrete time points, in contrast to static models that do not
study the temporal dynamics of variables (Estrada et al.,
2020; van Rijn, 2008; Kendall & Comer, 2014). The use of
sequences is justified to achieve greater ecological validity,
which can be defined as a measure of how well a model can
predict real-life behavior (Walls et al., 2006). The use of se-
quences implies another adaptation of the classical APIM
model. It transposes the model in the dynamic world. It
happens when we consider measurement repeatedly over
time (De Haan-Rietdijk et al., 2016). In our example on sex-
ual desire, to understand how it evolves over time, the ques-
tion needs to be asked over a defined period, which can be
relatively short, such as 10 days or long, like 3 months. The
answers to this question then form what we refer to as a se-
quence. Longitudinal APIM can be represented as in Figure
1(c). In the case of intensive longitudinal data, the behav-
ior is analyzed over time (t ). The score of the variable at
a specific time for one member of the dyad may be influ-
enced either by their own past scores on this variable or by
their partner’s past scores (Fuchs et al., 2017). This longi-
tudinal extension creates a nonindependence between ob-
servations (Mair, 2018). The classic APIM and both the in-
dexation and the longitudinal modification can be applied
to the usual numerical scores used in this framework, but
also to categorical variables.

Observational codes and questionnaires often use re-
sponse scales, resulting in categorical data. In this article,
the focus is on categorical data. An example of answers for
both partners is provided in the Appendix to show how the
sequences are represented. Analyzing the data as categor-
ical is important to maintain fidelity to the nature of the
data and avoid potentially erroneous numerical transfor-
mations. The most prevalent statistical model for intensive
longitudinal dyadic data is the logistic regression (Kenny et
al., 2006). The aim is to use the logit model in the frame-
work of sequential analysis to create a model based on the
time variable instead of the dyad. In this model, the answer

at t −1 is used as the independent variable and the answer
at t as the dependent variable. The aim is to estimate at
the same time the effect of each partner’s answer at time
t −1 on their answer at time t , but also the effect of inter-
action. The major limitation is that the logistic regression
model is only possible on binary outcomes. For our exam-
ple, if the possible answers are yes or no, the logit model can
be applied. However, if the answers are yes, no, unsure, the
model can no longer be applied because the possible out-
comes are no longer dichotomous. Fuchs et al. (2017) men-
tioned methods other than logistic regression, including
multilevel models and Markov chains, for modeling longi-
tudinal APIM. Although they elaborate on the use of logistic
regression and multilevel models, the Markovian approach
is only mentioned. For this tutorial, we focus specifically on
Markov chains to demontraste its revelance in the context
of longitudinal APIM.

Objectives

To stay at the simplest modeling level, we propose a unique
case analysis. This perspective is often adopted in psychol-
ogy to develop and evaluate a method with only one unit
of analysis (Kazdin, 2012). The objective is to focus on one
dyad and to model the interaction and to understand what
the pattern of each member is.

The first section of the article details the application of
Markov chains to dyadic sequences, whereas the second
section concentrates on the identification of patterns. We
use the evolution of a couple’s sexual desire as the reference
example for our work. Each part, modeling, estimation and
identification of interaction patterns, is illustrated with R

code. We present the case with two possible answers in
the text and the case with three possible answers in the Ap-
pendix. Moreover, comments about the functions and the
code are also available in the Appendix to follow the work
discussed.

Actor-Partner Interdependence Model using Markov
chains

The use of the APIM allows the identification of interac-
tion pattern, but before this can be done, the interac-
tion must be successfully modeled. To do so, we propose
the use of Markov chains, which are a classical approach
to model categorical sequences measured with a discrete
time. Markov chains represent the sequences as close as
possible to the data because no assumption is made about
the distribution of the data and no latent variable is used to
model the interaction.

In its classic version, Markov chains deal with a cate-
gorical temporal sequence. Therefore, to use them in the
dyadic case, transformations must be performed. Indeed,
the dependence between both members of the dyad must

TheQuantitativeMethods forPsychology 2322

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.19.3.p230


¦ 2023 Vol. 19 no. 3

be considered. To understand how Markov chains integrate
the dyadic structure of sequences, we present the classic
Markov chains before showing how to transform them for
the case in question. For classical Markov chains, we pro-
pose a step-by-step example in the Appendix. For dyadic
Markov chains, we integrate R code that allows following
and reproducing the analysis.

Classic Markov chains

Behavioral sequences collected at fixed intervals using
categorical scales can be modeled using Markov chains
(Ibe, 2013a). They are dependent of three elements: the
states space, the transition matrix and the initial state (Ibe,
2013c). The states space corresponds to the number of pos-
sible levels of the scales used to collect the data. In the ex-
ample proposed before, there are two states, namely yes
and no. In the case of a Likert scale with the following
possible answers: strongly agree, agree, neutral, disagree,
strongly disagree, there are five states. The initial state is
the state at the first measurement point. The sequence has
a fixed length. At each measuring point, the state in which
the individual is found is noted. The changes of state as the
chain progresses are called transitions. The total number
of transitions is the length of the chain minus 1. The num-
ber of transitions between each state can be summarized
in a count matrix. Each transition happens with a certain
probability, called transition probability, which is also ex-
pressed in a matrix. In the next part, the following abbre-
viations hold: S for the state space, s for any state, s0 for
the initial state, T for the length of the chain, t for any time
measurement, t0 for the first time measurement, C for the
count matrix and T P for the transition probabilities matrix.

Markov chains are based on the assumption that we can
determine the number of steps that we need to do in the
past to model the future (Ibe, 2013b). The number of steps
that must be done give the order of the chain. For example,
if the chain is of order 2, the last two states must be consid-
ered to model the next future state. In this work, we assume
that we can work with an order 1 chain, meaning that we
use the state at time t to model the state at time t+1. There-
fore, the transition probability may be written as a condi-
tional probability: P (state at time t +1|state at time t ). In a
simplified way, we write it as p j |i with i being the state at
time t and j the state at time t + 1. Because at any time
measurement the individual may be in any state, the tran-
sition matrix is of size (S ×S). For our example, S = 2 and
the size of T P is (2 × 2). Given that the states are mutu-
ally exclusive and collectively exhaustive, meaning that the
individual necessarily ends up in one and only one state,
each row of T P sums to 1. T P is a squared matrix with the
same number of states at time t than at time t +1. Recod-
ing yes as 1 and no as 2, the matrix of the example may be

represented as follows:

T P =
1 2

1
2

(
p1|1
p1|2

p2|1
p2|2

)
The matrix can be read either by rows or by columns.

Each line of the matrix represents the probabilities of end-
ing in the different possible states at time t+1 knowing that
we are in a state determined at time t . In each column, we
find the likelihood of ending in a fixed state at time t + 1
knowing that we were in the different possible states at time
t +1. Usually, the matrix is read row by row.

The parameters to be estimated are the transition prob-
abilities. To estimate them, we construct the count matrix,
C . The elements of this matrix are c j |i , which denotes the
number of times the sequence goes from any state i to j .
We use the maximum likelihood to estimate the transition
probabilities, p̂ j |i . Once we have estimated all the transi-
tions, we can construct the estimated transition probabili-
ties matrix, which summarizes the behavior of the individ-
ual. An illustration of the construction of the count matrix
and the transition probabilities matrix is done in the Ap-
pendix for the sequence of the woman.

Dyadic Markov chains

The classic Markov chain approach allows to model one se-
quence at a time. In the case of a dyadic design, two se-
quences must be modeled at the same time considering
that they are dependent. Therefore, the aim is to synthesize
the dynamics of change and the dependence between both
members of the dyad. As presented for the case of an in-
dividual, we model the Markov chains with one matrix per
individual and one matrix per couple. Modeling at the level
of the couple allows a summarized vision of the couple’s dy-
namic, but it does not allow an analysis of the individual
behaviors, which is why modeling at the individual level is
more interesting and allows us to understand the effect of
the behavior of both the individual and their partner.

At the individual level, in the case of a dyadic design, the
possible states to model the state in which an individual
will end up are all possible combinations of states of this
individual and their partner. In other words, if we model
the behavior of only one individual considering their part-
ner, we must consider their state and their partner’s state
at time t to model only their state at time t +1. In the case
of our example, the state space has length 4: (yes, yes), (yes,
no), (no, yes), (no, no). In this notation, the first element is
the state of the individual and the second is their partner’s
state. Considering that the dyad has two members, each
member is successively the first member. In other words,
when constructing the woman’s matrix, the first element of
the parenthesis is the woman’s state and the second is the
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Listing 1 Libraries, functions and data

source("FunctionsDyadicMarkov.R")

load("APM.RData")

str(APM)

## 'data.frame': 90 obs. of 2 variables:

## $ chain1: num 2 2 1 1 2 1 1 1 2 2 ...

## $ chain2: num 2 2 2 1 2 2 1 1 1 1 ...

S <- 2

apmFM <- APM$chain1

apmSM <- APM$chain2

man’s. The opposite situation arises when we model the
man’s chain. Consequently, two matrices exist, one per in-
dividual. Obviously, the individual will end up in only one
of the states. Therefore, the state space at time t + 1 has
length 2: yes, no. This set up changes the structure and the
size of the count and the transition probabilities matrices.
Indeed, it should consider all possible combinations of in-
put states. Consequently, the matrix becomes rectangular
and the size of T P is (S2×S), where S2 is the combinations.
For the example, the matrix size is (22 ×2) and appears as
follows:

1 2

T P =
(1,1)
(1,2)
(2,1)
(2,2)


p1|11

p1|12

p1|21

p1|22

p2|11

p2|12

p2|21

p2|22


This represents the matrix for one individual. Each el-

ement of the matrix may be written as p j |m , with m being
any possible combination of states. As for classic Markov
chains, the parameters to be estimated are the transition
probabilities. The procedure is the same as described pre-
viously: Construct the count matrix for each individual
considering the dyadic structure of the data and estimate
the transition probabilities using the maximum likelihood
estimation.

We exemplify the modeling of dyadic sequences by
Markov chains using simulated data for the four main
patterns of interaction, namely the actor-partner model
(APM), actor-only model (AM), partner-only model (PM)
and independence model (IM). We detail in the text the
general case of the actor-partner for S = 2. The other three
patterns of interaction are developed in the Appendix. R

code vignettes are used to expose the steps of the model-
ing. We comment on the lines of code and outputs. In ad-
dition, more specific comments on the functions used are
provided in the Appendix. The sequences were simulated
with S = 2 and T = 90, which correspond to 3 months. De-
tails on the simulation are also available in the comment

of Listing 1 in the Appendix. FunctionsDyadicMarkov.R
is a collection of functions available on the journal’s web
site; APM.RData is a simulated database containing chains
for two individuals in columns. We take chain1 as the se-
quence of the first partner and chain2 as the sequence of
the second partner. For our example, the first partner is the
woman and the second is the man. As explained before,
each element of the step-by-step procedure is done from
the point of view of each partner successively.

To obtain the transition probabilities matrix, we must
first extract the transition count matrix and estimate the
probabilities matrix using the maximum likelihood. We
show how to obtain the count and the transition proba-
bilities matrix in Listing 2. The count individual matri-
ces are called empMatFM and empMatSM for the first and
the second member, respectively. The lines of the matri-
ces correspond to the S2 possible combinations, namely
(1,1), (1,2), (2,1), (2,2). To check whether the count matrix
is correct, we can sum all the transitions. We obtain the
number of measurement points minus 1, T − 1, which is
correct. By briefly analysing the count matrices, we find
that the first member of this dyad finishes almost the same
number of times in both states, unlike the second member
who finishes more often in state (1). For the first member
of the dyad, we see that the weakest transition is between
the combination (1,2) and state (2). However, we find the
maximum transition at the level of the combination (1,1)
and state (2). For the second member of the dyad, the
weakest transition is between the combination (2,2) and
the state (1) and the most important number of transitions
is between the combination (1,2) and state (1). Both ma-
trices estimationFM.APM and estimationSM.APM are the
estimated transition probabilities matrices for both mem-
bers of the dyad. The matrices represent the probabilities
of transition between the S2 combination and the S states.
The sum of each row of these matrices is 1, which is cor-
rect. Details on both countEmp and mleEstimation are
available in the comment of Listing 2 in the Appendix.

As shown, when the unit of analysis is the individual,
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Listing 2 Count matrix and probabilities transition matrix

empMatFM.APM <- countEmp(states = S,

chainFM = apmFM, chainSM = apmSM)

empMatSM.APM <- countEmp(states = S,

chainFM = apmSM, chainSM = apmFM)

empMatFM.APM

## [,1] [,2]

## [1,] 8 17

## [2,] 15 3

## [3,] 14 14

## [4,] 6 12

empMatSM.APM

## [,1] [,2]

## [1,] 15 10

## [2,] 21 7

## [3,] 12 6

## [4,] 5 13

sum(empMatFM.APM)

## [1] 89

sum(empMatFM.APM)

## [1] 89

estimationFM.APM <- mleEstimation(countMat =

empMatFM.APM)

estimationSM.APM <- mleEstimation(countMat =

empMatSM.APM)

estimationFM.APM

## [,1] [,2]

## [1,] 0.3200000 0.6800000

## [2,] 0.8333333 0.1666667

## [3,] 0.5000000 0.5000000

## [4,] 0.3333333 0.6666667

estimationSM.APM

## [,1] [,2]

## [1,] 0.6000000 0.4000000

## [2,] 0.7500000 0.2500000

## [3,] 0.6666667 0.3333333

## [4,] 0.2777778 0.7222222

rowSums(estimationFM.APM)

## [1] 1 1 1 1

rowSums(estimationSM.APM)

## [1] 1 1 1 1

there are two matrices. At the couple level, the possible
states are the same at time t and t +1. Indeed, because we
are interested in the behavior of the dyad, the state space

is the combination of all possible states. This leads to a
squared matrix of size S2 ×S2. Using the previous example,
the matrix at the couple level appears as follows:

(1,1) (1,2) (2,1) (2,2)

T P =
(1,1)
(1,2)
(2,1)
(2,2)


pF M

1|11pSM
1|11

pF M
1|12pSM

1|21
pF M

1|12pSM
1|21

pF M
1|22pSM

1|22

pF M
1|11pSM

2|11
pF M

1|12pSM
2|21

pF M
1|12pSM

2|21
pF M

1|22pSM
2|22

pF M
2|11pSM

1|11
pF M

2|12pSM
1|21

pF M
2|12pSM

1|21
pF M

2|22pSM
1|22

pF M
2|11pSM

2|11
pF M

2|12pSM
2|21

pF M
2|12pSM

2|21
pF M

2|22pSM
2|22



The matrix summarizes both sequences at once. The
probabilities constituting it are a composite score of the in-
dividual transition probabilities. Therefore, although this
matrix represents the overall dynamics of the couple, it re-
mains less interesting than the individual matrices, which
makes it possible to understand the behavior of each indi-
vidual towards the behavior of their partner. Dyadic data
analysis at the dyadic level loses individual information.

Dyadic pattern identification

The transition matrix in constructed with conditional
probabilities related to the state the two members of the
dyad are in at the previous time. In the case of the AM, the
state of the partner does not have to considered. There-

fore, we can perform a restriction on the transition matrix
at the level of the partner state. Similarly, in the case of the
PM, the state of the actor does not matter and therefore a
restriction can also be made. In the case of the IM, time t
and t + 1 are independent. Therefore, the restrictions can
be done both on the actor and on the partner effects. In
the matrices, each restriction is done with · at the place of
the state. Using the same notation and example used previ-
ously, the case where the partner has no effect implies that
rows (1,1) and (1,2) and rows (2,1) and (2,2) are the same.
In a similar way, the case where the actor has no effect im-
plies that rows (1,1) and (2,1) and rows (1,2) and (2,2) are
the same. For the independence model, we do both restric-
tions. For the example with S = 2, the restrictions can be
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Table 1 Likelihood ratio test: Identification of the interaction

APM vs. PM
APM vs. AM >α ≤α

>α Independence model Actor-only model
≤α Partner-only model Actor-partner model

done as follows:

1 2

T P AM =
(1,1)
(1,2)
(2,1)
(2,2)


p1|1·
p1|1·
p1|2·
p1|2·

p2|1·
p2|1·
p2|2·
p2|2·


1 2

T P P M =
(1,1)
(1,2)
(2,1)
(2,2)


p1|·1
p1|·2
p1|·1
p1|·2

p2|·1
p2|·2
p2|·1
p2|·2


1 2

T P I M =
(1,1)
(1,2)
(2,1)
(2,2)


p1|··
p1|··
p1|··
p1|··

p2|··
p2|··
p2|··
p2|··


The type of interaction is therefore completely defined

by the structure of the matrix. To identify whether restric-
tions are possible, we can use the likelihood ratio test (LRT).
This test is used between two nested models. In the LRT, the
hypotheses are as follow:

• Null hypothesis (H0): The reduced model is the model
for the data.

• Alternative hypothesis (H1): The full model is the model
for the data.

The null hypothesis assumes that a restriction on parame-
ters is possible. If H0 is rejected, the APM is the right model
to build the structure of the matrix. Two tests can be per-
formed. The first one tests the full APM against the AM and
the second one tests the full APM against the PM. In each
case, if H0 is not rejected, the reduced model is kept. For
each dyadic sequence, both tests are performed at the same
time. If restrictions are possible for both models, the IM is
kept. Table 1 represents the four possible cases when test-
ing both restrictions. The α can be any threshold chosen
between 0 and 1, although it is generally fixed at 0.05.

The test is done at the individual level because each in-
dividual can adopt one type of interaction. This test is per-
formed using the function intType. As for the count ma-
trix, each member of the dyad is successively the first and
the second member. The function performs both tests at
the same time. Consequently, the interpretation of the test

directly shows the type of interaction that exists. Listing 3
performs the test for the APM. The apm.resFM is done from
the point of view of the first member of the dyad and the
apm.resSM is done from the point of view of the second
member. Referring to our example on sexual desire, the
first test identifies the interaction pattern of the woman,
and the second test identifies that of the man. In each case,
the test identifies the type of interaction as being an actor-
partner case. Knowing that our data was simulated using
the same pattern, the test correctly identifies the type of in-
teraction that exists between both individuals.

Our example focuses on the question "Did you have sex-
ual desire yesterday?". The possible answers are yes and no,
which implies two states, S = 2. If the possible answers had
been yes, no and unsure, S would have been 3. A complete
example of this case for the three kinds of pattern of inter-
action is provided in Listing 7 with a comment.

Conclusion and further directions

To analyze categorical dyadic sequences correctly within
the conceptual framework of APIM, it is necessary to use
specialized statistical models that account for both the cat-
egorical nature of the data and the longitudinal design. The
models should accurately identify the actor and partner ef-
fects inherent in APIM. Markov chains provide a suitable
approach to fulfill these requirements. Our article provides
a comprehensive explanation of how Markov chains can be
adapted to the dyadic context. In addition, we include a
step-by-step tutorial in R language to explain the practical
application of this approach. We show how this method
can be used to identify interaction patterns within dyadic
data. This work shows that Markov chains provide a valu-
able framework that can handle not only cases similar to
logistic regression, which is commonly used for situations
with two states, but also cases with a greater number of
states. Moreover, we have demonstrated that by employ-
ing Markov chains, we can effectively identify the mecha-
nism of interactions without the need for additional ana-
lytical methods.

Logistic regression and Markov chains can handle a
case with two states. Conducting a comparative analysis
between these two approaches would be valuable to dis-
cern the crucial distinctions and identify the strengths and
limitations of each method. This paper adopts a unique
case perspective to remain at the most basic level of anal-
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Listing 3 Identification of the interaction

apm.resFM <- intType(states = S, FM = apmFM, SM = apmSM, alpha = 0.05)

## Likelihood ratio test, Actor-only model

## data: Dyadic sequences

## X-squared = 12.323, p-value = 0.002109

## alternative hypothesis: The full model fits the data better

##

## Likelihood ratio test, Partner-only model

## data: Dyadic sequences

## X-squared = 11.02, p-value = 0.004047

## alternative hypothesis: The full model fits the data better

##

## [1] "The type of the model is APM"

apm.resSM <- intType(states = S, FM = apmSM, SM = apmFM, alpha = 0.05)

## Likelihood ratio test, Actor-only model

## data: Dyadic sequences

## X-squared = 6.8253, p-value = 0.03295

## alternative hypothesis: The full model fits the data better

##

## Likelihood ratio test, Partner-only model

## data: Dyadic sequences

## X-squared = 10.141, p-value = 0.006279

## alternative hypothesis: The full model fits the data better

##

## [1] "The type of the model is APM"

ysis. However, multiple dyad samples are also a reality
in psychological research, and it is therefore necessary to
work not only with a unique case dyad approach, but also
with a group approach. Consequently, our approach needs
to be further developed to examine similarities and dif-
ferences between a larger number of individuals within a
group of dyads.
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Appendix

Dyadic answers for a couple. Example of potential answers for both partners of a couple to the question Did you have
sexual desire yesterday?. The answers are reported for 10 days. Tables 2 and 3 report the answers for the woman and the
man, respectively.

Table 2 Answers for the woman

t 0 1 2 3 4 5 6 7 8 9
s yes yes yes no no yes no yes yes no

Table 3 Answers for the man

t 0 1 2 3 4 5 6 7 8 9
s yes yes no no yes yes yes no no no

Step-by-step example for classic Markov chains. Classic Markov chains model one sequence only. Let us take the se-
quence of the woman in the previous example and recode yes as 1 and no as 2. Table 4 shows the answers to this question
over 10 days. It can be seen as a classic Markov chain with 10 time measurements. We can write this in the following way:
T = 10, S = 2. The initial state is the state at time t = 0. The chain begins in state s = 1. If we want to analyze the chain, we
can see that the woman is more likely to be in state 1 than in state 2. We can also see that the woman can go from state 1 to
state 2 and vice versa, therefore, there is no absorbing state from which the woman does not emerge. We can make these
few observations because the chain is short, but to have a deeper analysis, we must obtain the transition probabilities
between each state. The count matrix C represents the transition as the number of times the chain changes from one state
to another. The transition probabilities matrix T P represents the estimates’ transition probabilities between each state at
a time. They are condition probabilities. Looking at the transition probabilities matrix, we observe that when the woman
is in state 1, she has the same chance to end up in the same state or in state 2 at the next measurement point. We also see
that when she is in state 2, she has more chance to end up in state 1 than in state 2. Therefore, we see that she has a greater
tendency to be in state 1 than in state 2, which translates into the fact that the woman answers yes more often than no to
the question she is asked.

Table 4 Classic Markov chains with two states: yes = 1, no = 2

t 0 1 2 3 4 5 6 7 8 9
s 1 1 1 2 2 1 2 1 1 2

1 2

C = 1
2

(
3
2

3
1

)
1 2

T P = 1
2

(
0.5
0.667

0.5
0.333

)
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Listing 4 Actor-only sequences

load("AM.RData")

amFM <- AM$chain1

amSM <- AM$chain2

empMatFM.AM <- countEmp(states = S, chainFM = amFM, chainSM = amSM)

empMatSM.AM <- countEmp(states = S, chainFM = amSM, chainSM = amFM)

estimationFM.AM <- mleEstimation(countMat = empMatFM.AM)

estimationSM.AM <- mleEstimation(countMat = empMatSM.AM)

am.resFM <- intType(states = S, FM = amFM, SM = amSM, alpha = 0.05)

## Likelihood ratio test, Actor-only model

## data: Dyadic sequences

## X-squared = 0.48677, p-value = 0.784

## alternative hypothesis: The full model fits the data better

##

## Likelihood ratio test, Partner-only model

## data: Dyadic sequences

## X-squared = 12.183, p-value = 0.002262

## alternative hypothesis: The full model fits the data better

##

## [1] "The type of the model is AM"

am.resFM <- intType(states = S, FM = amSM, SM = amFM, alpha = 0.05)

## Likelihood ratio test, Actor-only model

## data: Dyadic sequences

## X-squared = 2.9648, p-value = 0.2271

## alternative hypothesis: The full model fits the data better

##

## Likelihood ratio test, Partner-only model

## data: Dyadic sequences

## X-squared = 11.625, p-value = 0.00299

## alternative hypothesis: The full model fits the data better

##

## [1] "The type of the model is AM"

Comment on the simulation method from Listing 1. We simulated dyadic sequences using Markov chains. The first
simulation concerns the transition probabilities matrix. To simulate an individual transition matrix, it is necessary to sim-
ulate S vectors according to a standardized uniform distribution using random numbers. Because the transition matrix is
a stochastic matrix, each vector must sum to 1. To simulate a dyadic transition probabilities matrix, the same procedure is
used considering that the state space is the combination of specific states for each individual. Sequences generation de-
pends on three elements: the initial state, the transition probabilities matrix and the desired length of the chain. Once the
transition matrix is simulated according the type of interaction involved, the sequence is generated using the multinomial
distribution.
Comment on functions used in Listing 2. Both countEmp and mleEstimation functions have been coded to adapt clas-
sic Markov chains to the dyadic case. The countEmp function computes the count matrix for both individual and dyadic
cases. The input elements of this function are the number of states involved in the sequence, the sequence and optionally
the sequence of the partner of the individual considered in the case of dyadic data. The function is structured such that the
first chain concerns the first member. Consequently, in the case of dyadic data, each member of the dyad is successively
the first member. The mleEstimation function takes a count matrix for the input element and returns the estimated
probabilities transition. It computes these probabilities according to maximum likelihood. Because each row of the count
matrix is independent, the estimation is done on each row separately.
Comment on Listing 4. The first step is to extract the chains for both members. They are the amFM and amSM elements.
Once the chains are extracted, the likelihood ratio test can be run to identify the kind of interaction the members of
the dyad use. For both members, we observe that the actor-only model is the model of the interaction. Indeed, for
Actor-only model, H0 is not rejected, meaning that the reduced model must be kept. The behavior of the partner does
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Listing 5 Partner-only sequences

load("PM.RData")

pmFM <- PM$chain1

pmSM <- PM$chain2

pm.resFM <- intType(states = S, FM = pmFM, SM = pmSM, alpha = 0.05)

## Likelihood ratio test, Actor-only model

## data: Dyadic sequences

## X-squared = 7.9844, p-value = 0.01846

## alternative hypothesis: The full model fits the data better

##

## Likelihood ratio test, Partner-only model

## data: Dyadic sequences

## X-squared = 1.1539, p-value = 0.5616

## alternative hypothesis: The full model fits the data better

##

## [1] "The type of the model is PM"

pm.resFM <- intType(states = S, FM = pmSM, SM = pmFM, alpha = 0.05)

## Likelihood ratio test, Actor-only model

## data: Dyadic sequences

## X-squared = 9.1778, p-value = 0.01016

## alternative hypothesis: The full model fits the data better

##

## Likelihood ratio test, Partner-only model

## data: Dyadic sequences

## X-squared = 2.3873, p-value = 0.3031

## alternative hypothesis: The full model fits the data better

##

## [1] "The type of the model is PM"

not influence the behavior of the actor. For Partner-only model, H0 is rejected, meaning that the full model must be
kept. Consequently, the behavior of the partner does not influence the behavior of the actor, but their own behavior
matters for the modeling of the sequence. Therefore, the pattern of interaction is actor-only. The count matrix and the
estimated transition probabilities matrix could be extracted in a way that is similar to that of actor-partner sequences.
Comment on Listing 5. The first step is to extract the chains for both members. They are the pmFM and pmSM elements.
Once the chains are extracted, the likelihood ratio test can be run to identify the kind of interaction the members of
the dyad use. For both members, we observe that the partner-only model is the model of the interaction. Indeed, for
Actor-only model, H0 is rejected, meaning that the full model must be kept. For Partner-only model, H0 is not
rejected, meaning that the reduced model must be kept. Consequently, the behavior of the partner fully defined the
behavior of the actor. Therefore, the pattern of interaction is partner-only. The count matrix and the estimated transition
probabilities matrix could be extracted in a similar way than for actor-partner sequences.
Comment on Listing 6. The first step is to extract the chains for both members. They are the imFM and imSM elements.
Once the chains are extracted, the likelihood ratio test can be run to identify the kind of interaction the members of the
dyad use. For both members, we observe that the independence model is the model of the interaction. Indeed, for Actor-
only model, H0 is not rejected, meaning that the reduced model must be kept. For Partner-only model, H0 is also not
rejected, meaning that the reduced model must be kept. Consequently, both actor and partner restrictions can be made,
leading to an independent pattern of interaction. The count matrix and the estimated transition probabilities matrix could
be extracted in a way that is similar to that of actor-partner sequences.
Comment on Listing 7. For case S = 3, the procedure is similar to the one for case S = 2. First, we have to import the
data, set the parameter and export the chains. Then, the sequences can be estimated using Markov chains as in the
case S = 2. We observe that the size of the matrix is not the same, because it contains the following combinations:
(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3). Concerning the tests for the identification of interaction patters, the
procedure is similar. We see that it works and identifies the patterns correctly.
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Listing 6 Independent sequences

load("IM.RData")

imFM <- PM$chain1

imSM <- PM$chain2

im.resFM <- intType(states = S, FM = imFM, SM = imSM, alpha = 0.05)

## Likelihood ratio test, Actor-only model

## data: Dyadic sequences

## X-squared = 7.9844, p-value = 0.01846

## alternative hypothesis: The full model fits the data better

##

## Likelihood ratio test, Partner-only model

## data: Dyadic sequences

## X-squared = 1.1539, p-value = 0.5616

## alternative hypothesis: The full model fits the data better

##

## [1] "The type of the model is PM"

im.resFM <- intType(states = S, FM = imSM, SM = imFM, alpha = 0.05)

## Likelihood ratio test, Actor-only model

## data: Dyadic sequences

## X-squared = 9.1778, p-value = 0.01016

## alternative hypothesis: The full model fits the data better

##

## Likelihood ratio test, Partner-only model

## data: Dyadic sequences

## X-squared = 2.3873, p-value = 0.3031

## alternative hypothesis: The full model fits the data better

##

## [1] "The type of the model is PM"
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Listing 7 Full code analysis for S = 3

load("APM3.RData")

load("AM3.RData")

load("PM3.RData")

load("IM3.RData")

S <- 3

apmFM3 <- APM3$chain1

apmSM3 <- APM3$chain2

amFM3 <- AM3$chain1

amSM3 <- AM3$chain2

pmFM3 <- PM3$chain1

pmSM3 <- PM3$chain2

imFM3 <- IM3$chain1

imSM3 <- IM3$chain2

empMatFM3.APM <- countEmp(states = S, chainFM = apmFM3,

chainSM = apmSM3)

empMatSM3.APM <- countEmp(states = S, chainFM = apmSM3,

chainSM = apmFM3)

empMatFM3.APM

## [,1] [,2] [,3]

## [1,] 35 0 1

## [2,] 0 0 2

## [3,] 1 3 0

## [4,] 3 1 0

## [5,] 0 0 3

## [6,] 0 0 0

## [7,] 1 3 2

## [8,] 0 0 2

## [9,] 2 0 30

empMatSM3.APM

## [,1] [,2] [,3]

## [1,] 32 1 3

## [2,] 4 0 0

## [3,] 4 2 0

## [4,] 1 0 1

## [5,] 3 0 0

## [6,] 0 1 1

## [7,] 1 3 0

## [8,] 0 0 0

## [9,] 0 0 32

estimationFM3.APM <- mleEstimation(countMat =

empMatFM3.APM)

estimationSM3.APM <- mleEstimation(countMat =

empMatSM3.APM)

estimationFM3.APM

## [,1] [,2] [,3]

## [1,] 0.9722222 0.00 0.02777778

## [2,] 0.0000000 0.00 1.00000000

## [3,] 0.2500000 0.75 0.00000000

## [4,] 0.7500000 0.25 0.00000000

## [5,] 0.0000000 0.00 1.00000000

## [6,] 0.0000000 0.00 0.00000000

## [7,] 0.1666667 0.50 0.33333333

## [8,] 0.0000000 0.00 1.00000000

## [9,] 0.0625000 0.00 0.93750000

estimationSM3.APM

## [,1] [,2] [,3]

## [1,] 0.8888889 0.02777778 0.08333333

## [2,] 1.0000000 0.00000000 0.00000000

## [3,] 0.6666667 0.33333333 0.00000000

## [4,] 0.5000000 0.00000000 0.50000000

## [5,] 1.0000000 0.00000000 0.00000000

## [6,] 0.0000000 0.50000000 0.50000000

## [7,] 0.2500000 0.75000000 0.00000000

## [8,] 0.0000000 0.00000000 0.00000000

## [9,] 0.0000000 0.00000000 1.00000000

apm3.resFM <- intType(states = S, FM = apmFM3,

SM = apmSM3, alpha = 0.05)

## Likelihood ratio test, Actor-only model

## data: Dyadic sequences

## X-squared = 84.994, p-value = 4.564e-13

## alternative hypothesis: The full model fits the data

better

##

## Likelihood ratio test, Partner-only model

## data: Dyadic sequences

## X-squared = 57.009, p-value = 7.875e-08

## alternative hypothesis: The full model fits the data

better

##

## [1] "The type of the model is APM"

apm3.resSM <- intType(states = S, FM = apmSM3,

SM = apmFM3, alpha = 0.05)

## Likelihood ratio test, Actor-only model

## data: Dyadic sequences

## X-squared = 50.984, p-value = 9.375e-07

## alternative hypothesis: The full model fits the data

better

##

## Likelihood ratio test, Partner-only model

## data: Dyadic sequences

## X-squared = 67.472, p-value = 9.49e-10

## alternative hypothesis: The full model fits the data

better

##

## [1] "The type of the model is APM"

am3.resFM <- intType(states = S, FM = amFM3,

SM = amSM3, alpha = 0.05)

## Likelihood ratio test, Actor-only model

## data: Dyadic sequences

## X-squared = 8.5686, p-value = 0.7393

## alternative hypothesis: The full model fits the data

better

##

## Likelihood ratio test, Partner-only model

## data: Dyadic sequences

## X-squared = 37.139, p-value = 0.0002121

## alternative hypothesis: The full model fits the data

better

##

## [1] "The type of the model is AM"
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Listing 8 Listing 7 (followed)

am3.resSM <- intType(states = S, FM = amSM3,

SM = amFM3, alpha = 0.05)

## Likelihood ratio test, Actor-only model

## data: Dyadic sequences

## X-squared = 11.859, p-value = 0.4571

## alternative hypothesis: The full model fits the data

better

##

## Likelihood ratio test, Partner-only model

## data: Dyadic sequences

## X-squared = 26.249, p-value = 0.009897

## alternative hypothesis: The full model fits the data

better

##

## [1] "The type of the model is AM"

pm3.resFM <- intType(states = S, FM = pmFM3,

SM = pmSM3, alpha = 0.05)

## Likelihood ratio test, Actor-only model

## data: Dyadic sequences

## X-squared = 52.241, p-value = 5.618e-07

## alternative hypothesis: The full model fits the data

better

##

## Likelihood ratio test, Partner-only model

## data: Dyadic sequences

## X-squared = 16.198, p-value = 0.1823

## alternative hypothesis: The full model fits the data

better

##

## [1] "The type of the model is PM"

pm3.resSM <- intType(states = S, FM = pmSM3,

SM = pmFM3, alpha = 0.05)

## Likelihood ratio test, Actor-only model

## data: Dyadic sequences

## X-squared = 36.736, p-value = 0.0002465

## alternative hypothesis: The full model fits the data

better

##

## Likelihood ratio test, Partner-only model

## data: Dyadic sequences

## X-squared = 5.3098, p-value = 0.9468

## alternative hypothesis: The full model fits the data

better

##

## [1] "The type of the model is PM"

im3.resFM <- intType(states = S, FM = imFM3,

SM = imSM3, alpha = 0.05)

## Likelihood ratio test, Actor-only model

## data: Dyadic sequences

## X-squared = 7.8812, p-value = 0.7943

## alternative hypothesis: The full model fits the data

better

##

## Likelihood ratio test, Partner-only model

## data: Dyadic sequences

## X-squared = 9.2959, p-value = 0.6775

## alternative hypothesis: The full model fits the data

better

##

## [1] "The type of the model is IM"

im3.resSM <- intType(states = S, FM = imSM3,

SM = imFM3, alpha = 0.05)

## Likelihood ratio test, Actor-only model

## data: Dyadic sequences

## X-squared = 15.391, p-value = 0.2207

## alternative hypothesis: The full model fits the data

better

##

## Likelihood ratio test, Partner-only model

## data: Dyadic sequences

## X-squared = 14.379, p-value = 0.2772

## alternative hypothesis: The full model fits the data

better

##

## [1] "The type of the model is IM"
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