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Abstract m There is a range of statistical approaches available to researchers. Nevertheless, in the
probabilistic context, the frequentist approach is dominant, from the scientific literature to the
teaching of statistical methods in higher education institutions. However, research questions are
diverse, and other probabilistic statistical approaches may be advantageous in specific contexts.
The methods used by researchers are derived mainly from their training. Unfortunately, alternative
approaches, such as the Bayesian approach, are rarely taught, which may, in part, be due to the com-
plexity of teaching them. This article aims to address this problem by presenting a series of fictitious
examples illustrating the concepts behind Bayesian reasoning. It is intended as a tool for novice
researchers looking to gain a basic understanding of the Bayesian approach. The prior, likelihood
and posterior concepts will be illustrated by scenarios that learners can identify with. It is expected
that novice researchers who have internalized the concepts of the Bayesian method, partly through
these intuitive examples, would be more inclined to learn about this alternative statistical approach
and consider using it in their research field. This could, in turn, help diversify the statistical methods
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Introduction

Statistics are used to make sense of uncertain information
(Cressie & Wikle, 2011, p. 4). If the results were undeniable,
statistics would not be necessary. Therefore, the results
have a certain level of uncertainty, and you can only have a
certain level of confidence in them (Lele, 2020; Tukey, 1991;
Zyphur & Oswald, 2015). This opens the possibility for dif-
ferent approaches to address the uncertainty differently,
which can lead to different conclusions about the data. We
frequently make decisions based on varying amounts of in-
formation in various contexts, and good decision-making
requires using the most appropriate approach for the sit-
uation. There is extensive literature on the differences
between the two main probabilistic approaches: the fre-
quentist and Bayesian approaches (Bandyopadhyay, 2011;
van de Schoot et al., 2017). However, the frequentist ap-
proach dominates scientific literature and education cur-

ricula (Bland & Altman, 1998; Dogucu & Hu, 2022; van
de Schoot et al., 2017). This prevalence of one approach
over the other could be explained by the limited resources
available to teach and promote the understanding of the
Bayesian approach (Lecoutre, 2006). The purpose of this
study is not to debate which approach is best but rather
to provide an additional resource for students looking to
be introduced to Bayesian reasoning or for educators look-
ing for a resource to assist them in teaching it. Various
examples related to different domains of everyday life will
be presented and explained to facilitate the understand-
ing of the basic concepts behind the Bayesian approach.
Some concepts are simplified to facilitate the integration
and contrasts are dichotomized to ease the reader into the
possible issues of the Bayesian approach. The present ar-
ticle will focus on a narrower and more intuitive differ-
ence between the Bayesian and the frequentist approaches,
namely, the inclusion of prior knowledge into the statistical
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analyses.

Frequentist approach

The frequentist approach does not include preliminary in-
formation in the analyses, as it exclusively uses the data
gathered during the experiment to arrive at conclusions
(Jaynes, 1976; van de Schoot & Depaoli, 2014). This often
involves comparing the data to a null hypothesis and look-
ing at a p-value to conclude on the level of certainty that
the effect in the data exists (Dancey & Reidy, 2007). In this
paradigm, sufficiently large and representative data sam-
ples are necessary to reduce the uncertainty to an accept-
able threshold (Faber & Fonseca, 2014). This approach is
widely used in scientific research as it allows researchers to
carefully design their experiment to meet the requirements
for the data (e.g., a sufficient number of participants and
unbiased collection methods).

However, this approach can fail when the conditions
are unmet, as any problem with the data could lead to a
problem in forming the conclusion (Cohen, 1994; Jaynes,
1976; Lecoutre et al., 2003). For example, imagine that you
want to know the probability of rolling any number on a die
and try to figure it out by rolling it only five times. The fre-
quentist’s conclusion, entirely derived from the data, could
lead you to believe that it is impossible to roll a three simply
because it did not happen during your experimentation.
This would be an erroneous conclusion because of the in-
sufficient size of the data. If you roll it 100,000 times and
never roll a 3, you could conclude that the die is probably
rigged.

Although no prior information is used in the statistical
analyses, past knowledge is still present under the frequen-
tist methodologies, but they are not mathematically quan-
tified (Kaplan, 2014). For example, variables are selected to
be measured before any scientific experiment. These de-
cisions are based on the researcher’s prior knowledge and
assumptions that, for example, anxiety will be associated
with depression. The variables studied are not chosen at
random, and there is a high probability of them being rel-
evant before doing the study. Other examples are assump-
tions about the structure of the statistical model, such as
in mediation (MacKinnon et al., 2007). For instance, a re-
searcher could use information from a literature review to
hypothesize that attention would mediate the association
between sleep quality and academic achievement.

Similarly, confirmatory factor analysis sets the structure
and number of factors before collecting the data and run-
ning the studies (Bollen, 1989). These assumptions rest on
prior information possessed by the researcher. Still, they
are not quantified in the analyses, even if they are more
likely to be of interest than other random variables.
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The Bayesian approach adds to the data by considering this
prior knowledge in the statistical framework to arrive at a
conclusion that combines the data and the preceding in-
formation (Kurt, 2019; van de Schoot & Depaoli, 2014). Go-
ing back to the die example: if you enter as prior knowledge
that each side has a 1/6 chance of being rolled and then ex-
periment with five random rolls without ever getting a 3,
the conclusion will not be that it is impossible to roll a 3,
even if you don't roll any 3’s, but rather that the probability
isless than 1/6. We arrive at this conclusion by starting with
the prior knowledge (1/6 chance) and adding the data (zero
chances) to conclude that it is less likely to be 1/6 after the
experiment, but not much less because of the low number
of rolls. This example illustrates how, with a lack of data or
a biased sample, the Bayesian approach will provide a less
extreme value because it is balanced with prior knowledge
(Johnson et al., 2022). If we roll the die an infinite number
of times, the two methods will arrive at the same conclu-
sion: that a single die has a 1/6 chance of rolling any num-
ber.

This fictitious situation highlights a condition for which
the Bayesian approach would be vastly superior to the
frequentist approach, and situations as extreme as this
are rare in real life. To address scientific questions, the
Bayesian approach is not always ideal, and when it is, the
difference is not as extreme as in our example (Hacken-
berger, 2019). Nonetheless, the Bayesian approach to prob-
ability can be helpful in many situations (Winkler, 2001),
and we would benefit from it being introduced to future re-
searchers (Depaoli et al., 2017; Beard & West, 2017).

Although this approach may appear more complex ini-
tially, its reasoning applies to numerous real-life situations
(Johnson et al., 2022). Humans are often expected to make
decisions or form opinions based on uncertain conditions
and small amounts of data or experiences (Kurt, 2019).
As such, this article will bring forward the main concepts
surrounding the inclusion of previous knowledge in the
Bayesian approach using real-life examples that illustrate
Bayesian reasoning in an intuitive and accessible way. We
believe this approach can be intuitive to novice researchers
and students conditionally on it being properly presented.

Bayesian approach

Prior, likelihood, and posterior

We have been referring to these three components of the
Bayesian framework without directly naming them. Still,
we should define them before diving further into how
they interact. The prior refers to the knowledge or opin-
ion acquired before the data is collected (Johnson et al.,
2022). Theoretically, a prior could be constructed from
the past collected information, scientific knowledge, or
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hearsay (Kurt, 2019). For example, if we want to know if we
will enjoy reading a specific book, we could judge it by its
cover (information available before reading). This can be
considered an example of a weak or uninformative prior,
as the cover does not necessarily provide much informa-
tion on the book’s contents (Depaoli et al., 2017). A more
substantial source of preliminary information could be to
have read other books by the same author or ask friends’
opinions who have already read this book. Then, reading
parts of the book could be considered as the data collec-
tion, which, in statistical terms, is referred to as the like-
lihood (Depaoli et al., 2017; Kurt, 2019). In this example,
reading the entire book would mean having all the neces-
sary information to come to a conclusion, suggesting that
statistics would not add anything useful to form your opin-
ion on the book.

However, let’s say that you read the book’s first half and
want to decide if you should finish it. This decision would
be based on a combination of all the priors, which could
have included the cover’s look, your opinion about other
books by the same author, and your friends’ opinions about
the entire book. It would also be based on the likelihood,
which would be the data you collected or the idea you
formed while reading the book’s first half. The probabil-
ity of you finishing the book is called the posterior in the
Bayesian framework and would be based on a combina-
tion of the priors and likelihood (Kurt, 2019). These three
components can have several characteristics and interact
in different ways to give rise to various situations described
in the following sections.

Single versus multiple priors

To begin, priors are the previous knowledge of the situa-
tion (Depaoli et al., 2017). They can come from multiple
sources, have different conclusions, or relate to other parts
of the circumstances (Epstein & Schneider, 2007). They can
have different weights and contributions to that opinion
and are typically categorized as uninformative, empirical
or informative priors (Zyphur & Oswald, 2015).

Here is an example we will expand on over the follow-
ing few sections: you are going on a blind date with some-
one your friend wants you to meet. Before you meet that
person and find out how they are, you may receive hints
about their personality from different sources. You know
that their astrology sign is Libra (Prior 1), that you both like
the same type of music (Prior 2) and that your friend who
knows that person thinks you will get along (Prior 3). These
different sources of information contribute differently to
your prediction of how well you will get along with this per-
son. You could have only one relevant prior or add priors
you consider appropriate, but more priors are not neces-
sarily better and could bias your conclusion, which we will
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address later. To best assess if you will get along with that
person, the likelihood (meeting them) will contribute sig-
nificantly, but one date might not be sufficient. Your con-
clusion may need to be updated over time, meaning your
first date could become an additional prior for your next
meeting.

Expected value and variance

Priors contribute differently to forming your opinion be-
cause of how strong or weak of a predictor each source of
information is for how well you will get along with your
date (Depaoli et al., 2017). Weak priors are labelled unin-
formative priors in the Bayesian literature (Zyphur & Os-
wald, 2015) because they do not bring much information
or information with low certainty, in opposition to strong
prior (informative priors). The priors’ quality can be de-
scribed according to the expected value and the variance,
or in other words, the claim made before data collection
and how confident you are with that prediction (Depaoli et
al,, 2017). The prior has expectations of what will be ob-
served and assigns a value to it, but it also comes with vari-
ance around this value. For example, in the dating scenario,
the fact that you like the same type of music as your future
date could predict that you should "get along fine," whereas
your friend’s opinion is that you two would be a "perfect
match." The strength of your friend’s claim is more potent
by using the words "perfect match" than the claim of "get-
ting along fine" from having similar musical tastes; there-
fore, the expected value is higher. Their astrology sign may
say you are "incompatible," which is the opposite claim
from the music preference and your friend’s opinion. This
astrology claim could be stronger than the musical pref-
erence claim but weaker than your friend’s statement (see
Figure 1). The variance, or your confidence in this claim,
is the other characteristic that will affect your decision (Zy-
phur & Oswald, 2015). It refers to the degree of precision
or confidence in your claim or, in other words, how many
alternatives could realistically exist (Depaoli et al., 2017).
In our example, the astrology sign has a strong assertion in
one direction but such a high variance that it would be pos-
sible to have a result on the positive side.

The claim from your friend’s statement is much more
credible, as that person knows both you and your date very
well, hence the smaller variance. You could choose the
prior you believe to be the best predictor, or they can all
be combined to form your prior, which in this case, would
be your overall opinion of how you will get along with this
person before meeting them. This example is represented
in Figure 1.

The expected value and variance also apply to the like-
lihood or in other words the data (Zyphur & Oswald, 2015).
Your data collected could identify a strong or a weak claim,
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Figure 1 m Visual representation of multiple priors, their expected value and variance. The double-sided arrow repre-
sents the scale of possible claims on how compatible you are with your blind date, ranging from "totally incompatible" to
"perfect match." The black vertical line represents the value of the claim or expected value, and the further towards the
extremities, the stronger the claim is. The orange rectangle represents the variance of the claim. The rectangle covers the
values that could happen; therefore, the smaller the area, the smaller the claim’s variance.

Astrology Sign
Prior 1 4 | >
Totally Incompatible Neutral Perfect Match
Incompatible
Music taste
Prior2 ¢ | >
Totally Neutral Fine Perfect Match
Incompatible
Friend’s opinion
Prior 3 < >
Totally. Neutral Perfect Match
Incompatible

with low or high variance. For example, when meeting the
person, you could feel like it went well (strong claim) or just
fine (weak claim), and this could be based on a five-minute
conversation (high variance), a five-hour date (medium
variance), or years of interactions (low variance). It is the
same for the conclusion (posterior), such that it can have
a strong claim if you have a substantial prior and strong
likelihood or a weak conclusion if you have weak prior and
flimsy data. Nonetheless, as seen in the examples below,
many possible combinations of strength levels for the prior
and likelihood can affect the posterior in varying ways.

Aligned or opposed prior and likelihood

Another essential characteristic of the prior and likelihood
is the direction of their claims. The prior and the likeli-
hood can be aligned, which means that the direction of
their respectful claims is the same (Reimherr et al., 2014).
For example, your friend says you will get along with your
date (positive prior), and then you do get along (positive
likelihood). Contrastingly, they could be opposed (prior-
likelihood dissonance), such that your music taste pre-

dicted that you would get along fine (positive prior), but
the date goes horribly (negative likelihood; Reimherr et al.,
2014). In any case, the posterior will be a compromise be-
tween the claims of the prior and the likelihood. It will be
aligned or opposed to the priors and the data depending
on the characteristics of these components (Depaoli et al.,
2017). This will be explored further in the following sec-
tions.

Changed, confirmed, or softened belief

As stated before, the posterior combines the information
provided by the prior and the likelihood (Depaoli et al.,
2017). It combines the prediction with the collected data
while considering their expected value, variance, and di-
rection. As visualized in Figure 2, the result will be between
the two values but dragged more toward the claim with the
lowest variance (Zyphur & Oswald, 2015).

For example, the prior from your astrology sign, which
has a high variance and is considered less informative, will
have less impact than meeting the person. As a result, the
posterior will be closer to the data than the prior. It could
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Figure 2 m Visual representation of the combination of the prior and likelihood into a posterior. The double-sided arrow
represents the scale of possible claims on your compatibility with the blind date ranging from "totally incompatible" to
"perfect match." The black vertical line represents the strength of the claim, and the further towards the extremities, the
stronger the claim is. The orange rectangle represents the variance. The rectangle covers the values that could happen;
therefore, the smaller the area, the more confidence you have about this claim. The third arrow represents the posterior;
the value is between the prior and the likelihood values, but more towards the likelihood because of its lower variance.

Astrology Sign

Prior d | >
Totally Incompatible Neutral Perfect Match

Incompatible

First Date

Likelihood | | >
Totally Neutral Fine Perfect Match

Incompatible

New Opinion

Posterior <: >
Totally Neutral Perfect Match

Incompatible

also be the opposite: if your friend is sure that you will be
a perfect match, but after a five-minute conversation, you
don't agree, they may tell you to "Give it more time to get
to know each other." In this case, maybe you would give it
another try because your conclusion may be closer to your
friend’s claim than the short experience you had with your
blind date.

The relationship between the prior (previous belief)
and the posterior (new belief) depends on the data (Zyphur
& Oswald, 2015). Your future beliefs can change if the prior
and the likelihood are in different directions and the data is
stronger or has less variance (Depaoli et al., 2017). For ex-
ample, maybe you thought you would not like your future
date because they are Libra, but after meeting them, you
changed your mind and really liked them. On the other
hand, your belief can be confirmed and strengthened if
both the prior and the likelihood are in the same direc-
tion; they give you a posterior with less variance than each
claim separately (van de Schoot & Depaoli, 2014). This ex-
presses the phenomenon of accumulating evidence, where

the more experiences provide you with the same conclu-
sion, the more confident you are. This reinforces or con-
firms your belief, which can become your prior for a fu-
ture encounter with data and make it harder to change your
views as you gain confidence in your result over time and
see less possible variance around that value (Kurt, 2019).
New data will need to be stronger in the opposite direction
to change your beliefs (Depaoli et al., 2017). Finally, a belief
can be softened (Kurt, 2019). If you have a prior stronger
than the data and are in opposite directions, your belief will
remain closer to the prior, although not identical. It may
become a bit closer to the data, and you might slowly get
convinced by evidence, but you would require additional
data to change direction.

Understanding Bayesian Reasoning Using Real-life Sce-
narios

In this next section, real-life scenarios exemplify Bayesian
reasoning and the concepts of prior and likelihood. They
illustrate how their respective strength, variance and direc-
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tion may influence how they interact to form the posterior.
Examples will be presented by increasing the order of com-
plexity, beginning with a conceptual example and slowly
introducing numbers and basic probabilities.

Example 1

Since moving to the countryside, a long time ago,
your aunt has told a story about seeing a spaceship
right over her cornfield. She saw it in broad daylight
and called her husband to show him. Unfortunately,
the ship was gone when they returned to the field.

In this scenario, you are trying to determine whether or
not you believe in aliens. The first information you are us-
ing to base this opinion on is the story your aunt has told
you, in which she says she has seen a spaceship in broad
daylight. This would be considered a weak prior because it
comes from hearsay, which is not a reliable source of infor-
mation. Let’s add components to our example:

You recently came across a public forum on the In-
ternet with a hundred similar testimonies to your
aunts. People tell of similar events in different cir-
cumstances and parts of the world.

The added information about the peoples’ testimonies
in the public forum could be considered the likelihood and
is now influencing your original belief (prior). This like-
lihood also comes from a weak source of information, as
anybody can share what they want in online forums with-
out much verification. Therefore, although the likelihood
provides a strong claim that aligns with the prior and could
potentially strengthen your belief that aliens exist, you are
still not wholly convinced and simply continue to believe
that aliens probably exist (posterior). Suppose we add a dif-
ferent component to your initial belief that may oppose the
prior:

You recently came across a post from a Facebook
friend that explains how spy balloons are the source
of several misunderstandings regarding alien ship
sightings. The author of the Facebook post even states
that the existence of aliens does not make logical
sense for several reasons. The definite opinion of this
Facebook friend contradicts what you thought, and
you now consider that aliens may well be a human
invention.

In this case, you read a Facebook post refuting your
aunt’s story. Although the source of information is still
weak (weak likelihood), it now contradicts your initial belief
that aliens probably exist. The prior and likelihood in this
scenario are weak and in opposition, making it hard for you
to decide. Considering that the Facebook post author was
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more convincing than your aunt, it may change your opin-
ion and make you think that aliens probably do not exist.
This second situation is based on the same weak prior but
illustrates how a weak and opposite-direction likelihood
can change the posterior.

Example 2

You recently developed a passion for volleyball and
started playing in a local team multiple days a week.
While this new hobby brings you much joy, you notice
that you have unintentionally lost some weight since
you started. Considering that you want to main-
tain your current body weight, you want to determine
your daily calorie needs to prevent further weight
loss. You begin by watching a YouTube video from
your favourite fitness influencer to know what calorie
goal you should aim for and learn that most people
your age only need around 2000 kcal daily. You fol-
low this guideline and consume about 2000 kcals for
the following week. By the end of that period, you no-
tice you have lost another two pounds and decide to
buy a fitness tracker (e.g., smartwatch) to determine
your daily energy expenditure. After using the tracker
for a week, it indicates that your average daily energy
expenditure is 3000 kcals. Although you know this
watch is a reliable tool to measure energy expendi-
ture, this new calorie goal is relatively high compared
to the information you got from the original YouTube
video. As such, you decide to move ahead with a 2800
kcals calorie goal for the coming week to see if it helps
you maintain your body weight.

In this scenario, the information you are trying to es-
tablish is your daily calorie needs. The first source of in-
formation consulted, the YouTube video from your favorite
fitness influencer, offered you a prior of 2000 kcals per day.
This can be considered a weak prior because it was ob-
tained from an unreliable and imprecise source of infor-
mation, which means it has more variance. You then pro-
ceeded to collect additional data using a much more pre-
cise and reliable source of information (strong likelihood):
your weekly average energy expenditure as measured by
a personal fitness tracker. In this scenario, the likelihood
(i.e., the data) can be considered as opposed to the prior,
as it provided a much different conclusion regarding the
daily calorie goal you should be using. You can also notice
that, while the strong and opposite-direction likelihood has
managed to change your opinion and convince you to con-
sume a higher number of calories compared to what the
prior recommended, the information from the prior was
not completely erased. Instead, the prior knowledge was
combined with the likelihood’s information to form a new
balanced conclusion. Nonetheless, because you were con-
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scious that the information provided by the fitness tracker
came from a more reliable and precise source than that
of the prior, you gave more importance to the likelihood
than to the prior when forming your conclusion. This ex-
plains why your final chosen daily calorie goal of 2800 kcals
is closer to the likelihood (3000 kcals) than the prior (2000
kcals).

If we want to imagine a situation where a weak prior
and strong likelihood would provide information that is
aligned in direction, we could consider a scenario where
the information given in the YouTube video would have
been the same as that of the fitness tracker (i.e., 3000 kcals
per day). In such a case, it would have been more likely
that your conclusion regarding your daily calorie needs
would be precisely 3000 kcals instead of 2800 kcals per day;,
meaning your initial belief would be confirmed instead of
changed.

Example 3

You have visited the same Mediterranean country for
ten days every summer for the last ten years. In those
ten years, you have only witnessed two days of rain
during your visits. This year you want to throw an
outdoor party to celebrate your engagement, but you
need to pay a considerable deposit to secure the place
for the day. This decision will be affected by your be-
lief regarding the chance that it may rain on that day.
Based on the following two scenarios, we will see if
you decide to pay the deposit for the day of your event
or not.

Your prior is calculated as a percentage. To do so, you
would have to divide both days of rain over the total num-
ber of days of the visit. This denominator is ten days x ten
years which is 100 days. Therefore, the prior is 2/100 = 2%
chance of rain. Let’s consider the following likelihood:

You arrived in the country today, just 12 hours ago,
and there has not been a single drop of rain. This in-
formation makes you believe it will not rain during
your engagement party.

If you only base your decision on this data, without con-
sidering your experience, you would conclude that the like-
lihood of rain falling on your party’s day would be 0%. How-
ever, you could also combine your ten years of knowledge
(prior) with your current 12 hours of observation (likeli-
hood), which would result in a posterior. Considering that
all the rainy days you have experienced in this country can
be summed up to 48 hours (two days x 24 hours) and that
you have spent a total of 2412 hours there (10 days x 24
hours + the 12 hours of your current trip), your posterior
for the chance of it raining on the day of your party would
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amount to 1.99% (48h /2412h). Since the chance of rain is
so low, you decide to pay the deposit.
Another possible scenario:

A friend who has already arrived told you that it has
constantly been raining for the last two days, the day
before leaving for your trip. However, this is a friend
you don't find very reliable as they tend to exaggerate
everything, meaningyou only trust them around 50%
of the time.

If you base your decision solely on this current infor-
mation (likelihood), which would be your friend’s claims,
this will result in a 50% chance of rain since your friend re-
ported rain 100% of the time, but you only trust them par-
tially. This makes your decision to pay the deposit very dif-
ficult. However, your ten years of knowledge (inclusion of a
prior) would be combined with the information from your
friend to create a posterior with a different conclusion.

Since the total time of rain with the reliability consid-
ered is 72 hours (two days from your past ten years of va-
cation [48 hours] + two days from your friend with 50% re-
liability considered [24 hours]). Your full knowledge about
the country is 2448 hours (ten days for ten years + two days
from your friend). Your posterior for the chance of it rain-
ing on the day of your party is now 2.9% (48h + (0.5 x 48h))
/2412h). You still decide to pay the deposit as you conclude
there is less than a 3% chance of rain.

Example 4

You are an undergraduate student with the goal of
pursuing a doctorate degree and want to figure out
your chances of being admitted into the graduate
program of your dreams. At first, you panic because
you read that only 10% of students are accepted into
the program. When you hear that 85% of students in
the graduate program you aim for have had a GPA on
the admission of A and above, you feel very relieved.
As you have a GPA above A, you consider your chances
of admission to be around 85%. However, this con-
clusion is incorrect; it does not consider that not all
students with an average above A are accepted. In
fact, 5% of the students who were not accepted also
had an average GPA above A.

Indeed, 85% is the probability of having this GPA after
being accepted. Still, we need to include the prior likeli-
hood of being accepted into our equation to make an ac-
curate prediction. Bayes theorem allows us to calculate the
probabilities with a ratio of admitted students who have a
GPA above A and overall students with a GPA above A (those
accepted and not; see Figure 3). The numerator includes
those accepted (10%) and with a GPA above A (85% of this
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10%), which amounts to 10% x 85% = 8.5% of all students.
For the denominator, we need to combine this number
with the students who were rejected (90%) and had a GPA
above A (5% of this 90%), which amounts to 4.5% of all stu-
dents. As such, the final probability is 8.5%/(8.5%+4.5%) =
65.38%, meaning your actual likelihood of being accepted,
considering your GPA is above A, is only 65

Example 5

A real case in the United Kingdom in the late 90s illus-
trates Bayesian statistics’ impact in real life. Sally Clark, a
mother whose two sons died of sudden infant death syn-
drome (SIDS), was charged with murder and sentenced to
life in prison (Bertsch Mcgrayne, 2011). A pediatrician wit-
ness for the prosecution cited government statistics on the
incidence of SIDS cases in a family like Sally Clark’s (i.e.,
wealthy, non-smoking, and with a mother in the best age
range) and said that this only happens in one out of 8543
cases. To calculate the chance of two children dying from
SIDS, he multiplied the two statistics to arrive at one in
73 million, which was so rare that the conclusion had to
be that the two children were indeed murdered (Watkins,
2000). This statistic was widely circulated in the media and
strongly influenced the Conviction of Sally, who was sen-
tenced to life in prison for murder (Hill, 2004).

However, the jury should have been able to weigh two
competing explanations by comparing one highly improb-
able event, two siblings who died of SIDS, against another
unlikely event, two siblings killed by their mother (Waite et
al., 1999; Society, 2001). This way, they could have assessed
whether the babies were more likely to have died of natu-
ral causes than murder. It is, therefore, essential to find the
conditional probabilities of the different possible causes of
death. The necessary tool, Bayes’ theorem, allows the prob-
abilities of various events to be combined to weigh their rel-
ative probabilities (Watkins, 2000).

First, regarding the risk of SIDS, the probability of a
random child dying from it was 1 in 1300 then, not 1 in
8500 (Fleming et al., 2000). In addition, the probability of
a second child in the same family dying becomes higher
due to genetic propensity and other demographic factors,
such that it increases to 1 in 100 (Guntheroth et al., 1990;
Oyen et al., 1996). Concerning the probabilities of murder,
according to statistics available in the United Kingdom at
that time, approximately 30 children out of 650,000 annual
births would have been killed by their mothers (Fleming et
al., 2000). The number of double murders is estimated to
be at least ten times less frequent (Hill, 2004).

If we take the hypothesis that Sally’s two children died
of SIDS, we realize that it is no longer a one in 73 million
chance butrather a one in 130,000 chance that two children
from the same family will die. As for the double murder
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hypothesis, the possibility that Sally’s children were mur-
dered becomes even more unlikely, at a chance of one in
218,000. However, the jury never had the opportunity to
compare these two relative probabilities. Sally was released
after a second appeal where evidence, not available to her
defence team at trial, revealed that at the time of her second
baby’s death, he was suffering from a bacterial infection of
the blood known to cause sudden infant death syndrome
(Bertsch Mcgrayne, 2011). Sally died a few years after be-
ing released from prison, where she spent more than three
years for a crime that never happened (Bertsch Mcgrayne,
2011). The grossly misleading use of statistics during her
trial deprived her of the presumption of innocence.

Does the prior help or bias the results?

Suitable priors can help improve and balance situations
with few or uncertain data points and, as seen in the pre-
vious examples, can lead to a different comprehension of
the situation (Zyphur & Oswald, 2015; Johnson et al., 2022).
Unfortunately, as many studies try to uncover new infor-
mation that has not been established previously, informa-
tive and unbiased priors are not always available (Carpen-
ter et al., 2008). There remains a level of subjectivity to
choosing priors (Carpenter et al., 2008). Indeed, it is critical
to use priors cautiously (Moyé, 2008), as the use of biased
priors could drag bias into the conclusion. Nonetheless, so-
lutions have been proposed to reduce this subjectivity (De-
paoli et al., 2020).

Conclusion

This paper aims to give the reader a better theoretical
understanding of Bayesian reasoning and presents some
core differences between the frequentist and Bayesian ap-
proaches. It highlights the relevance and potential benefits
of using different statistical techniques for different situa-
tions, the importance of understanding these approaches,
and their respective advantages and disadvantages.

The Bayesian approach is not taught as commonly as
the frequentist approach, partly due to the limited re-
sources available to introduce novice researchers to this
alternative. This paper addresses this issue by introduc-
ing the main concepts of Bayesian reasoning through sim-
ple and intuitive examples while highlighting the impor-
tance of cumulative knowledge. These concepts include
the prior, likelihood and posterior, and how their respec-
tive characteristics affect their interaction. The examples
are introduced in increasing order of complexity while re-
maining accessible to novice learners by avoiding the use
of complex statistical formulas.

Using our prior knowledge to make decisions is some-
thing humans do in their everyday life, but there would
also be practical applications for using this approach in
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Figure 3 m Visual representation of the conditional probability of admission considering GPA on admission. Using 1000
students and the probabilities described in the scenario, the likelihood of being accepted if you have a GPA on admission
above A is 85/(85+45) = 85/130 = 65.38%. Probability is obtained by dividing the above A accepted students by all students

with an above A GPA.
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statistics. For example, in the weather scenario, the per-
son’s prior knowledge of the climate helped them make
a balanced decision, even when they had a small likeli-
hood. However, as mentioned previously, the Bayesian ap-
proach can introduce bias differently than the frequentist
approach. It should, therefore, be used cautiously in situ-
ations where the priors could be biased. Nonetheless, this
paper aims to facilitate the teaching and understanding of
the Bayesian approach for novice researchers to help diver-
sify the use of various statistical methods across scientific
literature.
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