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Abstract All statistical methods involve assumptions about the data and the output of the meth-
ods can be biased when the assumptions are not supported by the data. One of the common as-
sumptions is equal variance across the conditions. Another common assumption is that variables
are independently sampled from identically distributed populations (i.i.d.). The present study de-
scribes an example of such a violation of these assumptions and its effect on the results of Bayesian
statistical analyses. Yu et al. (2021) developed a Bayesian statistical model that can analyze the same
type of data as the one-way repeated-measure ANOVA. Their model assumed equal variance and
i.i.d. Unfortunately, these assumptions were not satisfied by their data. In the present study, their
model was revised to allow variance to vary with the conditions, and their data was reanalyzed. The
results of the analyses using these models were compared with the psychophysical results of Yu et
al. (2021). This comparison showed that the violated assumptions biased the results of the analysis.
This bias made the results of the analysis appear more supportive of Yu et al.’s (2021) conclusion,
but the validity of the analysis’s results needs to be re-considered. Note that it is important that one
carefully scrutinizes the data and understands the statistical method used to discuss the results of
the analysis.
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Introduction

All statistical analyses are formulated on the basis of as-
sumptions about the data, and the results of the analysis
become unreliable if these assumptions are violated. It is
therefore important to know what the assumptions are and
how much the results can be affected by the violation of the
assumptions.

For example, one of the most common assumptions
used in statistical analysis is the normality of a distribution.
Namely, the data, or the average of the data, are regarded as

samples taken from a normal distribution (Sawada, 2021).
It has been shown that the violation of this assumption
could affect the results of the analysis (Blanca et al., 2018;
Khan & Rayner, 2003; Oberfeld & Franke, 2013; also see
Faulkenberry, 2022; Gottardo & Raftery, 2009; Rossell & Ru-
bio, 2018). Note that in practice, the normality assumption
is never strictly satisfied (Micceri, 1989). Consequently,
the violation of the assumption and its effect on the re-
sults of the analysis should be regarded matters of degree.
Many other assumptions are also never strictly satisfied
and the effects of their violation are quantitative (Blanca et
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al., 2018; Fagerland, 2012; Kasuya, 2001; van den Bergh et
al., 2023).

Assumptions also play critical roles in Bayesian statis-
tical modeling. Bayesian statistical modeling is a descrip-
tive method to formulate a model to analyze the data. The
model can be formulated by considering the properties of
the data. For example, a model can use a skewed-normal
distribution instead of a normal distribution to character-
ize the data when the skewed-normal distribution charac-
terizes the data better. So, the assumptions used in the
analysis depend on the formulations used in the model. If
the data violate some assumptions of the model, the model
can be re-formulated to better characterize the data. If the
model can include some assumptions that are violated by
the data, these violated assumptions can affect the results
of the analysis that used the model. So, the data should
be carefully scrutinized before they are analyzed and used
in a Bayesian statistical model to discuss the validity and
assumptions of the model. Note that careful observation
means not only checking the results of statistical analyses.
It also means actually visualizing the data and then inspect-
ing the visualized data carefully.

The flexibility of Bayesian statistical modeling can pro-
vide a “researcher degrees of freedom” (Wicherts et al.,
2016). This flexibility should be used to characterize data
by introducing assumptions about the data into the model
or by revising the assumptions. However, this flexibility
may also be misused to distort the results of an analyses in
favor of a prediction made by a researcher (see Silberzahn
et al., 2018; Simmons et al., 2011). Note that this misusage
need not be intentional. When the results of an analysis are
consistent with the prediction, the researcher may be bi-
ased toward accepting the model without paying sufficient
attention to the violation of the model’s assumptions and
the validity of its formulation. Note that the assumptions
used in models are often implicit, and it may be difficult
for a researcher to recognize them and their potential vio-
lation unless he/she brings considerable care to analyzing
the data.

Bayesian models can be formulated in individual stud-
ies depending on their data but these models can also have
individual problems. So, I believe that discussing individ-
ual cases of using Bayesian statistical modeling is impor-
tant.

I found that Yu et al. (2021, see also Sawada & Pi-
zlo, 2022; Petrov et al., 2022) provide a good example of
how a violation of assumptions can distort the results of
an analysis. These authors proposed a Bayesian statisti-
cal model with some assumptions about their data but the
data clearly violated these assumptions. This violation gen-
erated a trend in the results of the analysis but this gen-
erated trend could be interpreted as an artifact, such as

a Type-1 error. I believe that Yu et al. (2021) provides an
important example of a problem from which psychologists
can learn what they need to be aware of when they perform
a Bayesian statistical analysis.

Their model was an analog of a one-way repeated-
measures ANOVA that could be used to analyze the data
of their psychophysical experiments. Their model was
formulated for an experiment that had a single within-
subject factor with multiple conditions and multiple mea-
surements were taken from each participant in each condi-
tion.

Two of the assumptions used in Yu et al.’s (2021) model
were clearly violated by the data in their psychophysical
experiment. The first assumption was that the variance
of the population of the participants was constant across
the conditions. The second assumption was that random
variables of a parameter were independently sampled from
an identical distribution (i.i.d.). The model characterized
the participant’s performance in the condition with mean
and variance across trials. The mean and variance were re-
garded as random variables that were sampled from their
individual distributions with satisfying the i.i.d. in the
model, so, there should not be any systematic relationship
between these two variables.

Equal variance across the conditions is one of the
common assumptions in statistical analyses, such as Stu-
dent’s unpaired t-test and ANOVAs (Ruscio & Roche, 2012).
There are some statistical tests for testing the violation of
this assumption (Delacre et al., 2017). The assumption
of equal variance is probably another assumption that is
never strictly satisfied unless the independent (or quasi-
independent) variable of the conditions is completely ir-
relevant for the dependent variable (Ruscio & Roche, 2012;
Grissom, 2000). So, the violation of the assumption and its
effect on the results of the analysis should be regarded as
matters of degree (Blanca et al., 2018; Fagerland, 2012; Ka-
suya, 2001) and the violation should be quantitatively eval-
uated. This evaluation can usually be based on the sam-
ple variances or the sample standard deviations of the in-
dividual conditions. Note that the sample variance in each
condition is attributed to both the between-subject and the
within-subject variabilities if the independent variable is
within-subject. Then, equal variance should be considered
on the basis of the within-subject variability but the viola-
tion of the assumption is not always clear from the sample
variance. The sample variance should be decomposed into
these two types of variabilities (see the section “Reviewing
Yu et al. (2021)”).

The assumption of i.i.d. is also common in statistical
analyses. The Bayesian statistical model of Yu et al. (2021)
was formulated under an assumption that the parameters,
individually, satisfied the i.i.d. and they are unrelated to
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one another. Note that the model characterizes the perfor-
mance of each participant in each condition with the mean
and variance across trials in the model. The present study
particularly considered the independence of these param-
eters from one another. There should not be any systematic
trend between the means and variances of the participants
if the i.i.d. is satisfied.

In the present study, I started by scrutinizing the data
obtained in Experiment 1 of Yu et al. (2021) and showed
that these data did not satisfy the assumptions of equal
variance. Next, their data were analyzed with two Bayesian
statistical models. One of the models was used to ana-
lyze the data in Yu et al. (2021). This original model as-
sumed that there was equal variance across the conditions.
The other model was developed by revising the original
model so that the revised model could accept the unequal
variance across the conditions. The results of this analy-
sis, which used both the original and revised models, were
compared with one another and with the data of Exper-
iment 1 in Yu et al. (2021). This allowed me to discuss
how the assumption of equal variance affected the results
of the analysis. I also examined whether the data violated
i.i.d. and how this violation affected the results of the anal-
ysis that used both models. On the basis of these results,
I will discuss what one must pay attention to when one
uses Bayesian statistical modeling to analyze Psychological
data.

Reviewing Yu et al. (2021)

The original model of Yu et al. (2021) had a hierarchical
structure with two levels for each participant and for a
group of the participants (Appendix, see Yu et al., 2021 for
details). The responses of each participant in each condi-
tion were represented as samples from a normal distribu-
tion in the model. The mean of this distribution was µi k

and the variance of the distribution was σi k
2 where i rep-

resented the participant and k represented the condition.
These two parameters were the most relevant to the sample
mean and the sample variance that were computed from
the responses of the participant i in condition k. Both the
mean µi k and the variance σi k

2 of the participant could
vary depending on the viewing distance conditions. The
mean of the distribution µi k was also modeled as a sum
of random samples βi and θi k from two normal distribu-
tions: µi k = βi + θi k . The sample βi was taken from the
normal distribution whose mean and variance were µβ and
(σβ)2. These two parameters were constant across the par-
ticipants and the conditions. The other sample θi k was
taken from the normal distribution whose mean and vari-
ance were µθk and (σθ)2. The mean µθk varied depend-
ing on the conditions but the variance (σθ)2 was constant
across the conditions. The sum of µβ and µθk was most

relevant to the sample mean of the participants’ group in
condition k. The sum of (σβ)2 and (σθ)2 was most relevant
to the sample variance of the participants’ group. The pa-
rameters (σβ)2 and (σθ)2 are independent of the viewing
distance conditions. Namely, the model assumes that the
variances of the participants’ group were equal across the
viewing distance conditions. All of these parameters, which
are modeled as random variables, satisfy i.i.d. The mean
µi k and the variance σi k

2 of the participants are modeled
on the basis of these variables, but no variable is used in
common to model µi k and σi k

2, so there should not be any
systematic trend between µi k and σi k

2.
Consider Experiment 1 of Yu et al. (2021). They tested

the effect of an object’s distance on the perceived depth-
interval of the object’s shape based on binocular dispar-
ity under two conditions of the object’s size (the fixed-
physical-size condition and the fixed-projected-size con-
dition, see also Sawada & Pizlo, 2022; Petrov et al., 2022).
There were three different viewing distances (0.7 m, 1.5
m, and 2.3 m) in the experiment. In the fixed-physical-
size condition, the size of the object in the scene was kept
constant while the retinal image size of the object was
changed as a function of the viewing distance. In the fixed-
projected-size condition, the retinal image size of the ob-
ject was kept constant by changing the object’s size in the
scene as a function of the viewing distance. These two
conditions about object size (fixed-physical-size and fixed-
projected-size) were tested in separate blocks. The three
viewing distance conditions (0.7 m, 1.5 m, and 2.3 m) were
randomized within each block. Note that Experiment 1
was a two-factor within-subject design, but note that their
model was formulated for a single-factor within-subject
design. The results of the two object size conditions were
analyzed separately in Yu et al. (2021). In my study, the
fixed-projected-size condition of Experiment 1 was partic-
ularly interesting because the assumption of equal variance
of the participants was not well satisfied in this condition
(see below).

The results of the fixed-projected-size condition are
shown in Figure 1 (replotted from Figures 4 and 5 in Yu et
al., 2021). Figure 1A shows averaged results from all 12 par-
ticipants. Figures 1B and 1C show the sample means and
the sample variances of the individual participants. The
abscissas represent the viewing distance of the object. The
ordinates of Figures 1A and 1B represent the binary loga-
rithm of the scaling factor of the depth-interval (see Yu et
al., 2021, for details). A larger value of the log scaling fac-
tor in Figures 1A and 1B means that the depth-interval was
more extended. The error bars with dotted lines in Figure
1A represent the conventional standard deviation. The er-
ror bars with solid lines in Figure 1A represent the within-
subject standard deviation, which is the standard deviation
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Figure 1 The results of the fixed-projected-size condition of Experiment 1 in Yu et al. (2021). (A) The averaged results
of all 12 participants (was replotted from Yu et al., 2021, Figure 4). The error bars with dotted lines represent the con-
ventional standard deviation. The error bars with solid lines represent the within-subject standard deviation, which is
the standard deviation estimated after removing the between-subject variability from the data (Cousineau, 2005). (B) The
sample means of the individual participants was replotted from Figure 5 in Yu et al. (2021). (C) The sample variances of
the individual participants. (D) The difference of the sample means between the pair of the viewing distances.
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estimated after removing the between-subject variability
from the data (Cousineau, 2005). The symbols in Figures 1B
and 1C represent the individual participants. The average
factor is largest at 1.5 m viewing distance and it is similar
between 0.7 m and 2.3 m. Yu et al. (2021) analyzed their re-
sults by using their Bayesian statistical model and claimed
that the log scaling factor became smaller as the viewing
distance became larger (see the sub-section “Analysis”).

Note that the original model of Yu et al. (2021) assumes
that the variance of the population is equal across the con-
ditions of viewing distance, but the empirical results of the
experiment do not support this assumption. The standard
deviations in Figure 1 (dotted error bars) are 0.52, 0.37,
and 0.39 at 0.7 m, 1.5 m, and 2.3 m viewing distance. The
within-subject standard deviations in 1 (solid error bars)
are 0.19, 0.084, and 0.16. The within-subject standard devi-
ation at 0.7 m viewing distance is more than twice as large
as the standard deviation at 1.5 m. The original model as-
sumed the variances of the individual participants could
vary depending on the condition. 1 does not show any clear
trend across the participants.

Experiment 1 in Yu et al. (2021) used a repeated-
measure design and each participant was tested in all of
the viewing distance conditions. The dotted error bars in
Figure 1A reflect both the between-subject and the within-
subject variabilities. The between-subject variability repre-

sents the variability of the positions of the curves in Figure
1B. The variability of the curves’ positions can be regarded
as the main effect of the participants and it is character-
ized by the parameter (σβ)2 in the Yu et al. (2021) model.
The within-subject variability represents the variability of
the shapes of the curves in Figure 1B. The variability of
the curves’ shapes can be regarded as the interaction be-
tween the participants and the viewing distance and it is
characterized by the parameter (σθ)2 in the Yu et al. (2021)
model. The parameter (σθ)2 is constant across the con-
ditions of the viewing distance. This means that Yu et al.
(2021) assumed that the within-subject variability was con-
stant across the conditions. Note that they assumed that
the variances of the individual participants could vary de-
pending on the condition. The variances of the individ-
ual participants in the individual conditions (Figure 1C) are
characterized by the parameter (σi k )2 where i represented
the participant and k represented the condition. The pa-
rameter (σi k )2 varied depending on the conditions.

The variability of the shapes of the curves can be eval-
uated on the basis of the difference in the log scaling factor
between each pair of viewing distance conditions. The dif-
ference in the log scaling factor is plotted in Figure 1D. The
ordinate represents the difference in the log scaling fac-
tor and the abscissa represents the pair of the viewing dis-
tances. The symbols represent the individual participants.
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The points are more narrowly distributed for the pair of 1.5
m and 2.3 m (M = 0.23, SD = 0.17, 95% CI [0.12,0.34]) than
the pair of 0.7 m and 1.5 m (M = −0.14, SD = 0.25, 95% CI
[−0.30,0.022]) and the pair of 0.7 m and 2.3 m (M = 0.093,
SD = 0.35, 95% CI [−0.13,0.31]). The homogeneity of the
variance of the differences between the pairs of the view-
ing distances was statistically rejected when Mauchly’s Test
for Sphericity was performed (W = 0.43, p = 0.015, see
Cousineau et al., 2021). The 95% confidence interval only
suggests that the difference between 1.5 m and 2.3 m view-
ing distance is non-null. This trend between 1.5 m and 2.3
m viewing distance is consistent with the claim in Yu et al.
(2021) that the depth-interval became more compressed as
the viewing distance became larger (Cohen’s d = 1.4).

The differences between 0.7 m and 2.3 m viewing dis-
tance (Cohen’s d = 0.27) and between 0.7 m and 1.5 m
viewing distance (Cohen’s d = −0.56) were not supported
by their confidence intervals. The magnitude of the differ-
ence between 0.7 m and 2.3 m was smaller than the magni-
tude of the difference between 0.7 m and 1.5 m. But, the
Bayesian statistical analysis in Yu et al. (2021) supported
the difference between 0.7 m and 2.3 m. This supported dif-
ference was the basis of their claim that the depth-interval
became more compressed as the viewing distance became
larger (Yu et al., 2021, pp. 7–8). On the other hand, the
sign of the difference between 0.7 m and 1.5 m was not
consistent with their claim and was not supported by their
Bayesian statistical analysis. So, this difference was not dis-
cussed in Yu et al. (2021). I replicated their analysis and
the difference in the results between the Bayesian statisti-
cal analysis and the conventional analysis, i.e., confidence
intervals based on a t-distribution. This difference will be
discussed in the following section.

Revising the Model of Yu et al. (2021)

The original model of Yu et al. (2021) was revised in this
study to incorporate the variability of the shapes of the
curves (Appendix). It was revised by introducing a differ-
ence in the variance that depended on the viewing distance
conditions for the group of the participants. Note that the
variance in the group’s level was characterized by (σβ)2 and
(σθ)2 in the original model. These parameters were con-
stant across the conditions. The parameter (σθ)2 was a
variance of a normal distribution whose mean µθk varied,
depending on the conditions in the original model. In the
revised model, the variance of this normal distribution was
(σθk )2 where k represented the condition. The parameter
(σθk )2 varied depending on the conditions. Once this was
done, this normal distribution characterized the difference
of the mean and the variance across the conditions in the
group level of the revised model. Note that the other pa-
rameter (σβ)2, which characterizes the group’s level vari-

ance, was a variance of a normal distribution whose mean
µβ was constant across the conditions in both the revised
and original models. This distribution characterized the
base of the mean and the variance that were constant
across the conditions in the group’s level.

Analysis

The revised model in my study and in the original model of
Yu et al. (2021) were used to analyze the empirical results
obtained in Experiment 1 of Yu et al. (2021). This analysis
used the Markov Chain Monte Carlo (MCMC) method to
estimate the parameters of the models, and the results of
this analysis were used to compare the revised model and
the original model.

Methods

The analysis was conducted by using JAGS (Just An-
other Gibbs Sampler, mcmc-jags.sourceforge.io/, Plummer,
2003) interfaced to R via a library rjags and R-studio. Yu
et al. (2021) implemented the original model in JAGS. This
implementation of the original model was provided by the
authors of Yu et al. (2021) and it was used for the analyses in
my study. The revised model of this study was also imple-
mented in JAGS based on the implementation of the origi-
nal model. The JAGS implementation of the revised model
and the R scripts for the analysis in my study were uploaded
to osf.io/4tu5h/.

The data of Experiment 1 in Yu et al. (2021) were re-
covered from the graphs that showed the results of these
studies (Figure 5 in Yu et al., 2021). The graphs were cap-
tured as image files and the data were captured by trac-
ing the plots in the graphs by using PlotDigitizer (plotdig-
itizer.sourceforge.net). The recovered data were the means
and their standard errors of the log scaling factor of the
depth-interval for each participant in the three viewing dis-
tance conditions. Their standard deviations were com-
puted by multiplying N 0.5

J with the recovered standard er-
rors where NJ was the number of trials in each condition,
which was 30.

Both the revised model and the original model were
formulated to take data from individual trials as their in-
puts, but these data could not be provided by the authors
of Yu et al. (2021), so I had to generate my own appropriate
data. I did this by generating synthetic data of individual
trials by using a function rnorm in R language that gener-
ates pseudo-random numbers following a standard normal
distribution. For each condition of each participant, NT
random numbers were generated and were transformed so
that my synthetic data matched the recovered data from Yu
et al.’s (2021) Figure 5 in descriptive statistics:

xi j k = (
x̂i j k − µ̂i k

) σ̄i k

σ̂i k
+ µ̄i k (1)
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Figure 2 The Bayesian posterior predictive distributions (95% HDIs) of (A, B) the means and (C, D) the variance of the log
scaling factor across the participants from the revised model and the original model. The empirical results of the fixed-
projected-size condition in Experiment 1 of Yu et al. (2021) were superimposed on these graphs. The error bars in (A, B)
are plotted in the same way as Figure 1A. The error bars in (C, D) represent the 95% confidence interval of the variance on
the basis of a χ2 distribution.
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where x̂i j k was a random number from the generator and
xi j k was the synthetic data of the j -th trial of participant
i in condition k transformed from x̂i j k . The parameters
µ̂i k and σ̂i k are the sample mean and the sample standard
deviation of the random variables before the transforma-
tion. The sample mean and the sample standard deviation
of the synthetic data became identical to the sample mean
µ̄i k and the sample standard deviation σ̄i k of the recovered
data after the transformation.

The procedure for the analyses of the revised model of
my study and of the original model of Yu et al. (2021) fol-
lowed the procedure used in the analysis in Yu et al. (2021).
These two models were applied to the synthetic data us-
ing the Markov chain Monte Carlo (MCMC) method. Re-
sults of each model were obtained from two chains of the
MCMC sampling. Each chain started with 1000 samples of
a burn-in period that was followed by 9000 samples. Con-
vergence of the chains was visually confirmed on the basis
of the trace and Gelman-Rubin-Brooks plots of all the pa-
rameters in the group’s level of the models.

Analysis sessions were repeated 100 times to check the
robustness of the results of the analysis. Note that the anal-
yses were based on the synthetic data that were randomly
generated in each session. This randomness of the syn-
thetic data affected the results of the analyses but the ef-
fect was small. The results of the analyses were discussed
on the basis of their trends that were robust across the 100
sessions unless specified.

Results

The revised model and the original model were first com-
pared on the basis of their Bayesian posterior predictive
distributions of the binary logarithm of the depth scaling

factor in the fixed-projected-size condition.
Figures 2A and 2B show the Bayesian posterior pre-

dictive distributions of the means of the log scaling factor
across the participants. Figure 2A shows the results of the
revised model and Figure 2B shows the results of the orig-
inal model. The abscissas represent the viewing distance
of the object. The ordinates represent the log scaling fac-
tor. The shaded areas are violin plots that represent the
shapes of the posterior probability distributions. The vi-
olin plots are trimmed with the 95% highest density inter-
val (HDI). The darker regions of the violin plots represent
the 25th and the 75th percentiles of the distributions. The
white line segments in the darker regions represent the me-
dians of the distributions. The sample means and the sam-
ple standard deviations of the fixed-projected-size condi-
tion in Experiment 1 of Yu et al. (2021) were superimposed
on these graphs (see Figure 1A for the same empirical re-
sults). Both of the models fit the empirical results almost
equally well but they tend to overestimate the mean of the
log scaling factor somewhat at the 0.7 m viewing distance
relative to the empirical results.

Figures 2C and 2D show the Bayesian posterior predic-
tive distributions of the variance of the log scaling factor
across the participants. Both of the models fit the empir-
ical results almost equally well but tend to underestimate
the variance of the log scaling factor somewhat at the 0.7 m
viewing distance compared with the empirical results.

Now, consider the Bayesian posterior estimates of pa-
rameters in the models. The posterior estimates of the pa-
rameters are summarized in Table 1.

Figure 3 shows the Bayesian posterior distributions of
dk of the revised model (Figure 3A) and the original model
(Figure 3B) in the same format as Figure 2. These graphs
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Table 1 The parameters of the revised and original models estimated from the 100 analysis sessions. The columns rep-
resent the 25th, the 50th (median), and the 75th percentiles of the HDIs of the Bayesian posterior distributions of the
parameters for the revised and original models.

Revised Original
25% 50% 75% 25% 50% 75%

µθ1 −0.0067 0.026 0.058 0.00090 0.028 0.055
µθ2 0.058 0.086 0.11 0.061 0.088 0.12
µθ3 −0.14 −0.11 −0.082 −0.14 −0.12 −0.090

(σθ1 )2 0.018 0.028 0.042 0.013 0.018 0.024
(σθ2 )2 0.012 0.018 0.027 0.013 0.018 0.024
(σθ3 )2 0.014 0.021 0.031 0.013 0.018 0.024
µβ −0.45 −0.37 −0.29 −0.45 −0.37 −0.28

(σβ)2 0.12 0.16 0.23 0.12 0.17 0.24
µλ1 −0.65 −0.52 −0.39 −0.65 −0.52 −0.39
µλ2 −0.80 −0.67 −0.54 −0.80 −0.67 −0.54
µλ3 −0.65 −0.52 −0.39 −0.64 −0.52 −0.39

(σλ)2 0.35 0.42 0.51 0.35 0.42 0.50

of the revised model and of the original model are roughly
similar to one another. The effect size is largest at 1.5 m
viewing distance and smallest at 2.3 m. The HDIs do not
overlap between 1.5 m and 2.3 m of viewing distance in
both models. The HDIs do overlap one another between
0.7 m and 1.5 m and between 0.7 m and 2.3 m in both
models. The overlaps between 0.7 m and 1.5 m are sub-
stantial for both models. The overlap between 0.7 m and
2.3 m is larger for the revised model than for the original
model. This overlap is small for the original model but it
is stably observed in all the 100 sessions of the simulation.
The Bayesian posterior distributions of µθk show the same
trends as the posterior distributions of dk for both models
(Figures 3C, 3D).

Independent and identically distributed random variables

The results of the analyses showed that the revised model
used in my study and the original model of Yu et al. (2021)
fitted the empirical results almost equally well but they
both showed similar discrepancies from the empirical re-
sults at the 0.7 m viewing distance (Figures 2, 3). These dif-
ferences between the models and the empirical results can
be attributed to the violation of i.i.d. in the empirical results
at the 0.7 m viewing distance.

Consider the individual participants’ empirical results
at the 0.7 m viewing distance (Figure 4A). It is easy to
see that the sample means of the log scaling factor were
larger as the sample variances became smaller at the 0.7
m viewing distance (Spearman’s rank correlation: ρ(10) =
−0.89, p = 9.2 × 10−5). A similar trend cannot be seen
clearly at the 1.5 m (ρ(10) = −0.48, p = 0.12) or at the
2.3 m (ρ(10) = −0.44, p = 0.15) viewing distances (Fig-

ures 4B, 4C). The trend at the 0.7 m viewing distance sug-
gests that i.i.d. was violated. Note that if the assumption
had been well satisfied, the dots representing the individ-
ual participants in Figure 4A would be distributed mirror-
symmetrically around a horizontal line that represents the
population mean and more widely as the sample variance
became larger.

A violation of i.i.d. at the 0.7 m viewing distance could
cause a discrepancy between the results of the analysis
from the psychophysical results (see Figures 2, 3). Specif-
ically, the mean of the log scaling factor was overestimated
(Figures 2A, 2B) and the variance was underestimated (Fig-
ures 2C, 2D) at the 0.7 m viewing distance. It is possible to
interpret the results of the analysis as being biased toward
the results of the participants whose sample variances were
small.

The bias at the 0.7 m viewing distance can be attributed
to the overestimation of d1 and µθ1 but these parameters
cannot be compared directly with the psychophysical re-
sults. Instead, the differences of µθ1 (0.7 m) from µθ2 (1.5
m) and from µθ3 (2.3 m) can be compared with the differ-
ences of the sample means of the individual participants
between 0.7 m and 1.5 m and between 0.7 m and 2.3 m
(Figure 5). It can be seen in Figure 5 that both µθ1 −µθ2

and µθ1 −µθ3 are overestimated relative to the mean of the
differences of the sample means. The HDIs of µθ1 −µθ2 in-
clude zero for both models. The HDI of µθ1 −µθ3 stably
includes zero in the tail of the distribution for the revised
model (see Kruschke, 2018). The HDI of µθ1 −µθ3 barely
includes zero for the original model in 65 out of the 100
sessions of the simulation. Note that the differences of the
sample means between 0.7 m and 1.5 m (Spearman’s rank
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Figure 3 The Bayesian posterior distributions (95% HDIs) of (A, B) dk and (C, D) µθk for the revised and original models.
The horizontal dashed lines represent the bottom of the HDI at 0.7 m viewing distance and the top of the HDI at 2.3 m
viewing distance.
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correlation: ρ(10) = −0.88, p = 0.00019) and between 0.7
m and 2.3 m (Spearman’s rank correlation: ρ(10) = −0.75,
p = 0.0075) were also correlated with the sample variances
at the 0.7 m viewing distance.

Summary

My analysis in the present study, showed that the result in
Yu et al. (2021) could be biased because their data did not
satisfy two of the assumptions used in the original Bayesian
statistical model of Yu et al. (2021). The first violated as-
sumption was that the variances of the participants’ group
were equal across the viewing distance conditions. The
second violated assumption was that the means and vari-
ances of the individual participants individually satisfied
i.i.d. and that there was no interdependence between the
means and the variances. I scrutinized the data obtained
in Experiment 1 of Yu et al. (2021) and showed that these
data did not satisfy these assumptions (Figures 1, 4).

Their original model was revised in the present study
so that the revised model could allow the variance to vary
depending on the condition. These two models tended to
show similar trends. There was a difference, however, be-
tween these two models. It was observed in the compar-
ison of dk and µθk between 0.7 m and 2.3 m viewing dis-
tance, but note that this difference was rather small (Figure
5).

Both of the models fitted the empirical results almost
equally well but they both showed similar discrepancies
from the psychophysical results at the 0.7 m viewing dis-
tance (Figures 2, 3). These discrepancies could be at-
tributed to the violation of i.i.d. The violation was in the
correlation between the sample means and the sample
variances of the log scaling factor across the participants at

the 0.7 m viewing distance (Figure 4A). This violation over-
estimated the mean of the log scaling factor (Figure 2) at
the 0.7 m viewing distance.

Note that the trend in the psychophysical results be-
tween 0.7 m and 2.3 m was consistent with the claim of
Yu et al. (2021) that the depth-interval became more com-
pressed as the viewing distance and the trend between 0.7
m and 1.5 m was not consistent with the claim, but note
that these trends were rather weak (Figure 1). The effect
of violating i.i.d. led to an overestimation of the consistent
trend between 0.7 m and 2.3 m and to an underestimation
of the inconsistent trend between 0.7 m and 1.5 m in the
results of the Bayesian analysis. The consistent trend be-
tween 0.7 m and 2.3 m was also slightly magnified by the
violation of equal variance.

The violation of i.i.d. that is caused by the correlation
between the sample means and the sample variances of
the individual participants is less critical with the common
conventional statistical methods used in Psychophysical
studies, such as t-tests and ANOVAs. These conventional
methods do not make use of the sample variances of the
individual participants when they are used to analyze the
results of a population of participants.

Other issues in Yu et al. (2021)

There are a few additional issues about the analyses in Yu
et al. (2021). First, Yu et al. (2021) could have mis-perceived
the results of their analysis. They observed that “the HDIs
do not overlap at all for the near and far distances” (p. 7 in
Yu et al., 2021). The “near” and “far” distances referred to
the 0.7 m and 2.3 m viewing distances (Y. Yu & A. A. Petrov,
personal communication, August 2, 2023). This observa-
tion was an important part of their “clear evidence” (p. 12
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Figure 4 The sample means of the log scaling factor of the individual participants (ordinates) plotted as a function of their
sample variances (abscissas) at the (A) 0.7 m, (B) 1.5 m, and (C) 2.3 m viewing distances.
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in Yu et al., 2021) used to support their claim, but this ob-
servation is not exactly consistent with their graph in Figure
6 of Yu et al. (2021). The HDIs at 0.7 m and 2.3 m viewing
distance slightly overlapped one another in their Figure 6
(Kruschke, 2018). This inconsistency was small but their
description was quite binary. Currently, authors working in
Psychology are encouraged to describe the results of their
analyses quantitatively.

Next, the authors of Yu et al. (2021) might have been
misled by how they plotted their results (Figure 5 in Yu et
al., 2021). Yu et al. (2021) plotted the results of individual
participants in separate panels that had different ranges for
their ordinates (Figure 5 in Yu et al. 2021). A small range of
the ordinate would enhance visually any trend in the plot
while a large range would suppress any trend (see Huff,
1954; Yang et al., 2021). The participants whose results were
consistent with the claim of Yu et al. (2021) that the depth-
interval became more compressed as the viewing distance
became larger were plotted in Yu et al. (2021, Figure 5) with
the short (1.2) or middle (1.7) ranges of the ordinates, so
these consistent results tended to be visually enhanced in
Yu et al.’s (2021) Figure 5. Their figure could have misled the
authors of Yu et al. (2021) and it can mislead their readers
about the overall trend of their results.

General Discussion

The present study discussed a case (Yu et al., 2021) in which
a Bayesian statistical analysis supported some trends in
psychophysical data while these trends were not supported

by a conventional analysis (t-tests). This difference in their
results could be explained by a violation of the assump-
tions, which were used in the Bayesian statistical model,
used in the analysis. The assumptions violated were: (i)
equal variance across the conditions and (ii) independent
and identically distributed random variables (i.i.d.). These
are two of the most common assumptions that are used
in many statistical analyses. I scrutinized the data and
showed that these data did not satisfy these assumptions.
I also conducted Bayesian statistical analyses of their data
using two different models. One of the models was for-
mulated by Yu et al. (2021) with the assumption of equal
variance. The other model in this study, was formulated
without the assumption of equal variance. There was a
difference between these two models but the difference
was rather small. The models showed similar discrepan-
cies from the psychophysical data and these discrepancies
could be explained by the violation of i.i.d. The violation
of these assumptions biased the results of the analysis in
such a way that the results appeared more supportive of Yu
et al.’s (2021) conclusion.

Bayesian statistical modeling is a descriptive method
that can be used to formulate a model to analyze data with
a high degree of flexibility. Flexibility is an advantage of
Bayesian statistical modeling but the flexibility can provide
a “researcher degrees of freedom” (Wicherts et al., 2016; see
also Goodboy & Kline, 2017; Seaman & Weber, 2015). It
demands a high degree of literacy on the part of the re-
searcher who must carefully observe the data and formu-
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Figure 5 The differences of the sample means of the individual participants (A) between 0.7 m and 1.5 m and (B) between
0.7 m and 2.3 m (ordinates) as functions of the sample variances of the individual participants at 0.7 m viewing distance
(abscissas). The arrows represent (A) µi 1 −µi 2 and (B) µi 1 −µi 3 of the individual participants. The styles of arrows repre-
sent the revised and original models. On the right sides of the individual graphs, the mean of the difference of the sample
means across the participants with their 95% confidence intervals based on a t-distribution and the 95% HDIs of Bayesian
posterior distributions of (A) µθ1 −µθ2 and (B) µθ1 −µθ3 for the revised and original models are plotted for comparison.
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late the model while examining and implementing prop-
erties of the data and it also makes similar demands on
the part of the readers. The researcher should be able to
recognize which assumptions were used in the model and
he/she should consider the validity of these assumptions
about the data. Note that the number of assumptions used
in the model increases as the model uses more parame-
ters and as the model becomes more complex. These fea-
tures of the model and the properties of the data should be
clearly reported. This is especially critical if any inference
is going to be made on the basis of the results of the anal-
ysis that are not clearly visible in the data. Careful scruti-
nization of the data is important in all statistical analyses,
including Bayesian analysis.

All statistical analyses, including Bayesian statistical
analysis, are formulated on the basis of assumptions about
the data, and the results of the analysis become unreliable
if these assumptions are violated. The present study de-
scribes an example of such a violation of assumptions of
equal variance and i. i. d. and its effect on the results of a
Bayesian statistical analysis. Bayesian models can be for-
mulated in individual studies depending on their data but
these models can also have individual problems. There-
fore, regardless of the statistical method used, it is impor-
tant to carefully scrutinize the data and understand the sta-
tistical method.

Author’s note

The author thanks the authors of Yu et al. (2021), Drs. Ying
Yu, James T. Todd, and Alexander A. Petrov, for sharing their
code.

The data and the code used in this study are uploaded
to osf.io/4tu5h/ except for the code of the original model of
Yu et al. (2021). Requests for the code of the original model
should be directed to the authors of Yu et al. (2021).
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Appendix

The Bayesian statistical model proposed in my study was formulated by revising the model of Yu et al. (2021). The original
model of Yu et al. (2021) was a Bayesian analog of a one-way repeated-measures ANOVA. The original model was formu-
lated for an experiment that had a single within-subject factor with multiple conditions. Multiple measurements were
taken from each participant in each condition. The design of the experiment was fully balanced, namely, each participant
was tested in all the conditions and ran the same number of trials in each condition. Note that the original model assumed
that the variance of the participants’ population was constant across the conditions. The original model was revised by
introducing a difference in the variance of the participants’ population that depended on the viewing distance conditions.

This appendix describes how I formulated the revised model. Note that the description of the revised model provided
just below is mostly true for the original model of Yu et al. (2021) as well. The difference between the revised model and
the original model is summarized in this appendix in the sub-section called “Difference from Yu et al.’s (2021) model”.

The input to the model is data taken from a psychophysical experiment. The model is also given the number of par-
ticipants NI , the number of conditions NK , and the number of trials in each condition NJ . Note that the data used in the
analyses of this study were taken from Yu et al. (2021). There were 12 participants and 3 conditions of viewing distance
and each participant ran 30 trials in each condition: NI = 12, NK = 3, NJ = 30. The data put into the model was the set of
1080 responses of the participants.

The revised Bayesian statistical model used in my study is represented graphically in Figure A1. Note that this repre-
sentation is the same as the representation of the original model provided in Yu et al. (2021, Figure A1) except for a few
revised parts (see the sub-section “Difference from Yu et al.’s (2021) model”). The input to the model is represented by yi j k

where the subscripts i , j , and k represent participant i , condition k, and trial j . The participants, conditions, and trials are
represented by the nested plates in the figure. The response yi j k is regarded as a random variable that is independently
sampled from a normal distribution with the mean µi k and the variance σi k

2. Both µi k and σi k
2 can vary depending on

the participants and the conditions and they are constant across the trials. The distribution of these two parameters µi k

and σi k
2 characterize the performance of each participant in each condition.

The natural logarithm λi k of the standard deviation σi k is regarded as an independent random sample from a normal
distribution whose mean and variance are µλk and (σλ)2. The mean µλk can vary depending on the conditions and is
constant across the participants. The variance (σλ)2 is constant across the conditions and the participants. Priors are
individually assigned to the parameters µλk and σλ (see the sub-section “Priors”).

The mean µi k of the distribution for participant i in condition k is represented as a sum of two parameters βi and θi k :
µi k =βi +θi k . The parameter βi represents the mean performance of participant i across the conditions. The parameter
θi k represents the performance of participant i in condition k relative to the mean βi of the participant. The parameter
βi is regarded as a random sample from a normal distribution whose mean and variance are µβ and (σβ)2. These two
parameters are constant across the participants and the conditions. The parameter θi k is a random sample in a normal
distribution whose mean and variance are µθk and (σθk )2. These two parameters can vary depending on the conditions.
Both µθk and (σθk )2 are constant across the participants. The parameter µβ represents the mean performance of the
population of the participants across the conditions. The parameter µθk represents the performance of the participants’
population in condition k relative to the mean µβ of the population. Note that the mean µi k of the distribution for partic-
ipant i in condition k can also be regarded as a random sample from a normal distribution whose mean and variance are
µβ+µθk and (σβ)2 + (σθk )2. This distribution characterizes the population of the participants in condition k. Priors are
individually assigned to the parameters µβ, σβ, and σθk (see the sub-section “Priors”).
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Figure A1 A graphical model representing structure of the Bayesian statistical model proposed in my study (Jordan, 2004;
Lee, 2008; Shiffrin et al., 2008). The parameter yi j k with a shaded circle represents the input to the model. The parameters
with single-bordered circles represent latent variables that were sampled from their individual priors. The parameters
with double-bordered circles represent latent variables that were computed deterministically from the other parameters.
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Consider a case in which NK ≥ 3. The parameter µθk is constrained as:

0 =
NK∑
k=1

µθk (A1)

so that µθk represents the population of the participants in condition k relative to the mean µβ of the population across
the conditions. The parameter µθk is characterized by the effect size dθk :

µθk = dθkσθk (A2)

where dθk is referred to as the effect size in condition k (Lee & Wagenmakers, 2014). The effect size dθk is regarded as a
sample from a normal distribution whose mean and variance are 0 and (σd )2 that are constant across the conditions (see
the sub-section “Priors”). To satisfy all these conditions, dθk and µθk are formulated as:

µθk = dθkσθk = ḋθkσθk −
∑NK

q=1(ḋθqσθq )

NK
(A3)

where ḋθk is a parameter to which a normal distribution is assigned as its prior. The mean of the prior of ḋθk is 0 and its

variance (σḋk )2 is:

(σḋk )2 =
(
σd

)2
(
NK

2 −NK
)(
σθk

)2 −∑NK
q=1

(
σθq

)2

(NK −1)(NK −2)
(
σθk

)2 (A4)
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When NK = 2, 0 =µθ1 +µθ2 and the effect size dθ between the two conditions is defined as (Cohen, 1988):

dθ = µθ1 −µθ2√ (
σθ1

)2+(
σθ2

)2

2

(A5)

The prior of dθ is a normal distribution whose mean and variance are 0 and (2σd )2 (see the sub-section “Priors”).

Priors

The parameter µλk and (σλ)2 are the mean and the variance of a distribution from which the natural logarithm λi k of
the standard deviation σi k of each participant in condition k is sampled. The prior µλk is a normal distribution whose
mean and variance are 0 and 22. The prior σλ is a uniform distribution between 0 and 10. These prior distributions
are sufficiently wide, considering Yu et al.’s (2021) data. The natural logarithm of the sample standard deviations of the
individual participants is between -1.8 and 0.60 in the data.

The parameter µβ and (σβ)2 are the mean and the variance of a distribution from which the mean performance βi

of each participant across the conditions is sampled. The prior µβ is a normal distribution whose mean and variance
are 0 and 102. The prior σλ is a uniform distribution between 0 and 10. These prior distributions are sufficiently wide,
considering the data. The maximum and the minimum of the sample means of the individual participants are -1.4 and
0.34 in the data.

The parameter (σθk )2 is the variance of a distribution from which θi k is sampled for each participant in each condition.
The mean of this distribution is µθk . The parameter θi k represents the performance of the participant in the condition
relative to βi of the participant. The prior of σθk is a uniform distribution between 0 and 10. This prior distribution is
sufficiently wide, considering the range of the sample means of the individual participants is between -1.4 and 0.34 in the
data.

When NK ≥ 3, the parameter µθk is characterized by the effect size dθk and dθk is formulated with ḋθk . The effect size
dθk is regarded as a sample from a normal distribution whose mean and variance are 0 and (σd )2. The variance (σd )2 is set

to 1 (Rouder et al., 2009; Yu et al., 2021). This setting of (σd )2 determines the variance (σḋk )2 of the prior of ḋθk (Equation
A4) and this is a normal distribution whose mean is 0. The effect size dθk is computed using Equation (A3). When NK = 2,
the difference between µθ1 and µθ2 is characterized by the effect size dθ. The prior of dθ is a normal distribution whose
mean is 0 and whose variance (2σd )2 where (σd )2 is set to 1.

Difference from Yu et al.’s (2021) model

The difference between the revised model and the original model of Yu et al. (2021) concerns the following parameters:
NK , (σθ)2, and dθk .

The original model of Yu et al. (2021) only considered cases in which the number of conditions NK was 2 and 3. This
was the case because their model was specifically formulated for analyzing the results of their psychophysical experiment.

The most important difference between the revised model and the original model of Yu et al. (2021) concerns (σθk )2.
The variance of the performance of the participnts’ population in condition k is characterized as (σβ)2 + (σθk )2. The
parameter (σβ)2 is constant across the conditions for both the revised model and the original model. The parameter
(σθk )2 varies depending on the conditions in the revised model. However, the original model assumed that (σθk )2 was
constant across the conditions. The parameter (σθk )2 was referred to as (σθ)2.

Yu et al. (2021) formulated dθk in a simpler but less-precise way than the revised model does when NK = 3. The effect
sizes dθ1 and dθ3 in conditions 1 and 3 (0.7 m and 2.3 m viewing distance) were samples taken from their prior, which was
a standard normal distribution, whose mean and variance were 0 and 1. The effect size dθ2 in condition 2 (1.5 m viewing
distance) was computed as dθ2 =−dθ1 −dθ3 . Note that 0 = dθ1σθ +dθ2σθ +dθ3σθ and Equation (A1) was satisfied. With
this formulation, dθ2 could be regarded as a sample from a normal distribution whose mean and variance were 0 and
2. The variance of the distribution of dθ2 was larger than the variance of the prior of dθ1 and dθ3 . I confirmed that this
difference in the variances did not produce any observable effects on the results of the analysis of Yu et al.’s (2021) data.
Note that, when NK = 2, the prior dθ1 is a standard normal distribution and dθ2 is computed as dθ2 =−dθ1 .

Open practices

The Open Data badge was earned because the data of the experiment(s) are available on osf.io/4tu5h/
The Open Material badge was earned because supplementary material(s) are available on osf.io/4tu5h/
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