
¦ 2023 Vol. 19 no. 4

Managing the Assumption of Normality within the
General Linear Model with Small Samples:

Guidelines for Researchers Regarding If, When and How.

Conrad Stanisław Zygmont aB

aHelderberg College of Higher Education, Somerset West, Western Cape, South Africa and Stellenbosch University, Stellenbosch, South
Africa

Abstract Academic textbooks, statistical literature, and publication guidelines provide conflicting,
ambiguous and often incomplete answers to the question of how researchers should handle the nor-
mality assumption for classical general linear model tests when conducting their analyses. Previous
studies have shown that normality violations can impact on type I errors, power, parameter esti-
mates and standard error estimates of classical tests. This paper reviews the arguments in favour
and against normality testing, the role of the central limit theorem, types of violations that tests
within the general linear model are susceptible to, methods for evaluating the normality assump-
tion, and the paradox that normality tests have low power in small sample sizes where the influence
of assumption violations are likely to be most profound. A Monte Carlo simulation study was used to
evaluate the power of 18 normality tests across 18 alternative distributions, and the effect of normal-
ity deviations on estimates of centrality, scatter and regression coefficients. The results demonstrate
that the type of normality test and distribution matters, and that a conditional testing procedure
utilising normality tests to select between classic, non-parametric and robust tests should not be
used. Instead, an alternative procedure for managing the normality assumption is advised, and
demonstrated in the supplementary materials using R code and data that are provided.
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Introduction

Parametric tests within the General Linear Model (GLM),
of which t-tests and ANOVA are special cases, have the as-
sumption that the response variable (or residuals of the
model) should follow a Gaussian distribution for unbi-
ased parameter estimates and correct inferences. The best
methods, and even whether testing for normality is nec-
essary for such statistical tests, remain hotly debated top-
ics in both scholarly literature (e.g. Bishara et al., 2021;
Büyükuysal & Sümbüloğlu, 2021; Delacre et al., 2019; Knief
& Forstmeier, 2021; Orcan, 2020; Shatz, 2023; Wilcox &
Rousselet, 2023) and online discussions among academics
(Anglim, 2016; Halvorsen, 2019; Silverfish, n.d.). Data fol-
lowing a non-Gaussian distribution, which violate the nor-

mality assumption, frequently feature in research in fields
like psychology and education (Cain et al., 2017). In such
disciplines real-life data are unlikely to ever be perfectly
Gaussian (Micceri, 1989). At the centre of the normality
testing debate is the paradox that formal null-hypothesis
tests of normality have low power in small sample sizes,
when detecting non-normality of the population distribu-
tion is most needed (this is when parametric tests are least
robust); but in large samples they are too sensitive to im-
material deviations from normality that don’t actually mat-
ter (where the Central Limit Theorem predicts parametric
tests will be most robust to normality violations).
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Discrepancies in Statistics Texts

Several popular introductory statistical textbooks, from
various disciplines, recommend the assumption of nor-
mality should be tested in order to determine if paramet-
ric tests are appropriate for use (e.g. Keller, 2018; Mont-
gomery & Runger, 2011; Paolella, 2018). Other textbooks
caution against routine normality testing in favour of using
non-parametric or robust methods like resampling, or em-
phasize the robust nature of parametric statistics in large
sample sizes (e.g. Gravetter & Wallnau, 2014; Howell, 2013;
Weisberg, 2014). For example, Field (2018) suggests “if your
sample is large then don’t use significance tests of normal-
ity, in fact don’t worry too much about normality at all. In
small samples pay attention if your significance tests are
significant but resist being lulled into a false sense of secu-
rity if they are not” (p. 346). Pek et al. (2018) reviewed 61
undergraduate and graduate level statistics textbooks re-
garding their recommendations of how to deal with non-
normality. They found that most graduate textbooks rec-
ommend transformations (89%) while just over half (56%)
propose classic parametric GLM tests would be robust due
to the Central Limit Theorem (CLT). The two most common
approaches discussed in undergraduate textbooks were to
either ignore the normality assumption in light of CLT
(78%), or use a rank-based method (76%) when data do not
conform to normality (conditional testing). Another ap-
proach, largely missing from contemporary textbooks was
proposed by Hogg (1977a, 1977b) and Tukey (1977), but
has largely been ignored in contemporary textbooks. They
suggested that non-parametric or robust methods should
routinely be conducted simultaneously with classical para-
metric tests; when results concur across procedures no fur-
ther analysis is necessary, but when they differ substan-
tially data and theory should be used in the evaluation of
which test is best suited. Zimmerman (2011) has recently
revived discussion regarding this approach and has shown
that it can protect Type I error rates and increase power in
small sample sizes. The merits, cautions, and adaptations
to this approach will be revisited in the discussion section
of this paper. Conflicting suggestions in the literature can
leave lecturers, students, and researchers uncertain about
how to approach the assumption of normality, which test-
ing processes should be used, and if there is a specific sam-
ple size at which normality assumptions are unnecessary.

Guidelines from Associations and Journals

Researchers often rely on association and journal guide-
lines to direct them in formulating and writing up their
statistical analyses. The American Psychological Associa-
tion (APA) task force on statistical inference recommends
researchers “take efforts to assure that the underlying as-

sumptions required for the analysis are reasonable given
the data” (Wilkinson & Task Force on Statistical Inference,
1999, p. 601). The most recent APA reporting guide-
lines require researchers to describe how assumptions were
checked and what accommodations were implemented if
assumptions were violated (Applebaum et al., 2018). Sta-
tistical publishing guidelines for medical journals require
that researchers must “verify that data conformed to the
assumptions of the test used to analyse them” (Lang &
Altman, 2016, p. 33). The American Statistical Associ-
ation’s statement on statistical significance and p-values
notes that assumptions should be one of the contextual
factors considered for proper statistical inference and that
complete reporting and transparency are good scientific
practice (Wasserstein & Lazar, 2016). Taken together, these
guidelines seem to establish the requirement for thorough
evaluation and reporting of how the normality assumption
is handled, consideration of its potential effects, and ap-
propriate adjustment in lieu of such considerations.

Arguments against Normality Testing

Many scholars propose that normality assumptions can ef-
fectively be ignored. Their main arguments include: (1)
normality tests are unreliable in small samples; (2) that
with a sufficient sample size commonly used hypothesis
tests are sufficiently robust to normality violations given
the CLT; or (3) preliminary testing of assumptions can in-
flate the conditional Type I error rate involved in the two-
step testing process (e.g. Field, 2018; García-Pérez, 2012;
Gelman & Hill, 2007; Hopper, 2014; Rochon et al., 2012; Ro-
chon & Kieser, 2011). The first two arguments raise ques-
tions about what sample size is “good enough” for one to
safety ignore the assumption of normality. Various authors
have set threshold limits for small sample size, above which
CLT will compensate for normality violations, and below
which test statistics are likely to be adversely impacted.
These have traditionally ranged from 25 to 100, but the ac-
tual sample size needed is impacted by the size and type
of deviation from normality (Pek et al., 2018). Wilcox and
Rousselet (2023) affirm that “contrary to the theorem, nor-
mality is not guaranteed in all situations for sample sizes
that are often presented as safe in statistics textbooks” (p.
4). There is evidence that research conditions exist in which
CLT will not protect for violations in normality with sample
sizes of 100, 200, or even 300 when the error distribution is
skewed with a thick tail (Lindstromberg, 2020). The third
argument has shown to be true in some cases (Rochon &
Kieser, 2011), but not in others, depending on which tests
are paired together (Parra-Frutos, 2016). In other cases,
such as when three or more group means are being com-
pared, the two-step procedure has been shown to be ad-
vantageous (Lantz et al., 2016). Irrespective of how re-
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searchers have chosen to deal with normality assumptions,
their approach should be motivated in their report – some-
thing far too few researchers are currently doing (Delacre
et al., 2019; Hu & Plonsky, 2019). It may be that some
judge them to be unnecessary, but it is likely that many
were insufficiently trained or confused regarding which as-
sumptions to test, how to assess them, and what to do if
the assumptions are violated (Hoekstra et al., 2012). De-
spite the controversy over normality testing there remain
some researchers (e.g. Kim & Park, 2019; Mishra et al., 2019)
and publishing guidelines (e.g. Applebaum et al., 2018) that
continue to call for normality testing to be conducted and
reported. And various scholars continue investing their
time and expertise in trying to develop new (and hope-
fully improved) approaches to normality testing or modi-
fications to existing tests (e.g. De la Rubia, 2022; Kellner &
Cellise, 2019; Mória et al., 2021).

Are Normality Assumptions Really Necessary for GLM
Tests?

Historically, pioneers such as Box, Fisher, Geary, Pearson,
Please, and Pitman drew attention to the normality as-
sumption and placed emphasis on skewness and kurtosis,
demonstrating impact on parameter estimates of homo-
geneity of variance and measures of location and scatter.
They also found classical parametric tests to be fairly ro-
bust if underlying distributions have similar shapes, homo-
geneity of variance, and sample sizes are not too small (Th-
ode, 2002).

Normality and t-tests

Some convergence studies suggest normality may be an
unnecessary assumption for t-tests and linear models re-
lying on measures of central tendency even for large de-
viations from normality for samples as low as 100 (Lum-
ley et al., 2002; Schröder & Yitzhaki, 2017). Others show
that t-tests may lose power when normality is violated
(e.g. Blair & Higgins, 1980a, 1980b, 1981, 1985; van den
Brink & van den Brink, 1989). Wilcox (2001, 2022) demon-
strated numerous examples of the vulnerability of para-
metric tests to subtle violations of distributional assump-
tions. Wilcox (2012) makes a strong argument that “re-
sorting to the central limit theorem in order to justify the
normality assumption can be highly unsatisfactory when
working with means” (p. 328). Despite the central limit
theorem assumption that the sampling distribution of the
mean will be normal in large sample sizes, it is important to
note that the empirical t distribution can deviate substan-
tially from the asymptotic Student’s t distribution when
non-normality is present (Wilcox, 2022). For this reason
theoretical and review articles often insist that for t-tests,
which are based on the mean as an estimate of population

central tendency, evaluating the normality assumption is
essential (e.g. Kim & Park, 2019; Mishra et al., 2019). Gen-
erally the Student’s t-test is much more sensitive to devi-
ations from normality in the form of skewness than in the
form of kurtosis, particularly in small samples (Sawilowsky
& Blair, 1992; Wilcox, 1990; Zumbo & Jennings, 2002). Kur-
tosis impacts on the standard error of sample variance even
at large sample sizes, with standard error underestimated
in the case of leptokurtic distributions and overestimated
with platykurtic distributions (Cain et al., 2017). But skew-
ness and kurtosis on their own cannot be used to make a
judgement if the t-test is appropriate, the whole structure
of the distribution should be studied (Lee & Gurland, 1977;
Orcan, 2020).

Normality and One-Way Fixed-Effects ANOVA

The ANOVA F statistic is generally considered more robust
to moderate violations of distributional assumptions than
the t-test (Blanca et al., 2017). ANOVA is more susceptible
to heterogeneity combined with differences in group sam-
ple sizes than normality violations in the error distribution
(Blanca et al., 2018; Delacre et al., 2019). In a review of
early studies, Glass et al. (1972) concluded that the ANOVA
F statistic is more susceptible to violations in kurtosis than
skewness. Khan and Rayner (2003) came to the same con-
clusion in their simulation study. But research in this re-
gard has not been consistent. Harwell et al. (1992) con-
ducted a meta-analysis and found that skewness could im-
pact ANOVA Type I error rates more than kurtosis. Findings
vary based on the criteria used, and whether studies are
more concerned with increases in Type I error rates, which
are normally fairly robust, or decreases in power, which is
more likely to be impacted (Wilcox & Rousselet, 2023).

Normality and Linear Regression

With regard to Ordinary Least Squares (OLS) linear regres-
sion, Gelman et al. (2021) suggest that normality is the least
important assumption, and that it is not necessary to test
for normality. Others argue that non-normality in regres-
sion residuals can distort regression parameter estimates
and significance tests, and so residuals should be tested
for normality (e.g. Beaujean, 2014; Das & Imon, 2016; Fox
& Weisberg, 2011; Osborne & Waters, 2002). Monte Carlo
simulations have demonstrated that when there are out-
liers on both the outcome and predictor variables, type I
error rates are likely to be effected, particularly with small
samples (Knief & Forstmeier, 2021). Type I errors and re-
gression coefficients are more susceptible to bias from high
skewness at low sample sizes than other types of Gaus-
sian violations, mainly because of the possibility of the in-
troduction of high leverage outliers. Parameter estimates
may become nonsensical when assuming a normal dis-
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tribution with non-Gaussian data. For this reason, Knief
and Forstmeier (2021) suggest running linear models with
a rank-based inverse normal (RIN) transformation of the
data for hypothesis testing. But for parameter estimation,
they propose using advanced approaches like generalized
linear mixed models (with adequate checking of the as-
sumptions of these techniques). Instead of transforma-
tions, Silva-Lugo et al. (2021) demonstrate that even at large
sample sizes, non-parametric models can sometimes pro-
vide more accurate estimates. They proposed “instead of
using the Central Limit Theorem to justify parametric lin-
ear regression analyses, we should use cross-validation or
double cross-validation to make more objective and sound
decisions as scientists” (Silva-Lugo et al., 2021, p. 15).
Wilcox and Rousselet (2023) concur that whenever using
parametric tests it is always “prudent to check the extent
to which robust methods give similar results” (p. 28).

Normality and Linear Mixed Models

With linear mixed models, fixed effect model estimates
have been found to be robust to violations of normality as-
sumptions for Gaussian models (Warrington et al., 2014).
Similarly, Schielzeth et al. (2020) found that even with vi-
olations of the distributional assumptions of random ef-
fects variances or residual variances the model estimates
remained fairly robust. Parameters most closely linked to
violations may result in greater variability in estimates from
sample to sample when distributions are severely skewed,
bimodal, or residuals are heteroskedastic.

Summary - Is It Necessary to Test the Normality Assump-
tion?

In summary, normality may not be the most important as-
sumption in general linear models (Gelman et al., 2021).
However, evaluating normality is essential for detecting
large deviations and outliers in small sample sizes, but this
is precisely where formal normality tests tend to lose relia-
bility and accuracy, and where choice of test becomes im-
perative (Razali & Wah, 2011). Outliers can influence both
skewness and kurtosis, with deviations in skewness affect-
ing estimates of location, and kurtosis affecting estimates
of scatter. Different kinds of normality tests, and various
tests in the General Linear Model, are differentially sensi-
tive to such deviations. Classical t-tests are impacted more
by deviations in skewness whereas ANOVA is influenced
more by deviations in scatter, particularly if any of these
models include groups with unequal sample sizes. It would
be good practice to use normality tests that are sensitive
to the kinds of variations that matter to your model, and
always consider these in combination with other assump-
tions of your model.

How Should Researchers Evaluate the Normality As-
sumption?

Approaches for testing the parametric assumptions of data
can be broadly categorized into (1) graphical methods, (2)
descriptive statistics, and (3) goodness-of-fit (GOF) test
statistics. Graphical approaches are useful because they al-
low for a quick, intuitive evaluation for the kinds of devi-
ation from normality that is likely to be important for any
specific model (e.g. outliers, skewness, or kurtosis). Var-
ious scholars and journal publishing guidelines have rec-
ommended that the normality assumption (of the data or
residuals for ANOVA and regression) should be evaluated
with discretion using quantile-quantile (Q-Q) plots (Grech
& Calleja, 2018; Kozak & Piepo, 2017; Schucany & Ng, 2006;
Shatz, 2023; Wilkinson & Task Force on Statistical Infer-
ence, 1999). The challenge with graphical evaluation of
Q-Q plots is that interpretation is somewhat subjective re-
sulting in fairly low inter-rater reliability (Aldor-Noiman et
al., 2013; Loy et al., 2016). In order to address this limita-
tion, Huang et al. (2019) developed an objective hypothesis
testing process based on machine learning and computer
vision evaluation of Q-Q plots. Descriptive statistics, in-
cluding measures of skewness and kurtosis, provide quan-
titative indicators of deviations from normality in the sam-
ple. However, these sample statistics are seldom sufficient
to detect normality violations that impact parameter esti-
mates (Orcan, 2020). Finally, formal Goodness-of-fit hy-
pothesis tests are available to evaluate omnibus hypothe-
sis of normality. There are over 100 such tests available,
with the Kolmogorov-Smirnov (Kolmogorov, 1933) test de-
scribed as the most popular normality test (Arnold & Emer-
son, 2011). Its frequent use is likely because of its inclusion
as a default in IBM SPSS Statistics (Pedrosa et al., 2015). It
is often used despite the fact that “most people do not rec-
ommend its use” [italics in original] (Howell, 2013, p. 78).
Any attempt to identify the best test is hampered by the
infinite number of alternative distributions to test against.
Typically, tests tailored to a specific distribution category
have very low power for detecting divergence from normal-
ity on other categories (Farrell & Rogers-Stewart, 2006; Is-
lam, 2017). For example, while the Jarque-Bera test has
relatively high power with long-tailed distributions, it per-
forms poorly for distributions with short tails, especially if
the shape is bimodal (Thadewald & Büning, 2007). Tests
based on the Vasicek (1976) entropy estimator have been
found to outperform many other tests when distributions
have little skew, negative kurtosis, high skew and kurtosis,
or are bimodal but perform very poorly with log-normal
distributions (Alizadeh Noughabi & Arghami, 2011, 2012;
Yazici & Yolacan, 2007; Zamanzade & Arghami, 2012). Islam
(2017, 2019) has attempted to overcome this limitation by
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calculating a power envelope for various t-distributions us-
ing LR-tests based on Neyman-Pearson lemma, which can
be used to calculate the stringencies for a number of nor-
mality tests. Islam (2017) found the Anderson-Darling test
to have the highest power for all sample sizes on the com-
plete selected class of alternatives, followed closely by the
Chen-Shapiro (Chen & Shapiro, 1995) test, which performs
particularly well with smaller and medium sample sizes.
Numerous reviews of univariate goodness-of-fit (GOF) nor-
mality tests have been published (e.g., Adefisoye et al.,
2016; Ahmad & Sherwani, 2015; Arnastauskaitė et al., 2021;
Islam, 2017, 2019; Farrell & Rogers-Stewart, 2006; Pedrosa
et al., 2015; Romāo et al., 2010; Seier, 2002; Sürücü, 2008;
Schick et al., 2011; Uyanto, 2022; Yap & Sim, 2011; Wijeku-
larathna et al., 2022). With the exception of Adefisoye et
al. (2016), Arnastauskaitė et al. (2021), Romāo et al. (2010),
and Uyanto (2022), most reviews have covered only a small
number of well-known tests or focused on a specific class of
tests, such as the entropy-based estimators (e.g., Alizadeh
Noughabi & Arghami, 2011, 2012; Zamanzade & Arghami,
2012). Often the tests suggested are powerful only with
larger sample sizes (e.g. Arnastauskaitė et al., 2021). None
of these broad evaluations have included more than one
type of empirical characteristic function class tests, which
have recently received more attention (e.g., Bakshaev &
Rudzkis, 2017; Lafaye de Micheaux & Tran, 2016; Van Zyl,
2017). Some reviews have included relatively little known
tests, such as the Gel-Miao-Gastwirth (2007) test or Csörgő
(1986) CS statistic, modifications of commonly used om-
nibus tests (e.g., Sürücü, 2008), or provided comparisons
among different classes of tests and demonstrated the su-
periority of some little known tests for specific types of al-
ternative distributions (e.g., Yazici & Yolacan, 2007). Even
though some of these tests show merit they are not read-
ily available to researchers in commonly used statistical
software (Miecznikowski et al., 2013). As a result many re-
searchers continue to use the default tests available in their
software of choice, which is often a dubious choice (Eng-
mann & Cousineau, 2011). This paper extends the work
of previous reviews by evaluating the need for normality
testing, comparing a large number of tests that have not
all appeared together in a previous review, and making the
procedures involved in normality testing more accessible
to researchers by providing code for their implementation
in appendix A and a demonstration of their use in appendix
C.

Methodology

Design

A Monte Carlo simulation design was used with two pri-
mary goals: (a) to evaluate the power of eighteen normal-

ity tests in detecting departures from a population with a
normal N (µ,σ2) distribution at sample sizes ranging from
8 to 120; and (b) evaluate the accuracy of parameter es-
timates for location, scatter, and linear regression coeffi-
cients for each alternative distribution at different sample
sizes. Zumbo and Jennings (2002) introduced the contami-
nation index (CI) as a measure of the extent to which a sam-
ple distribution deviates from normal. Seeing as parameter
values are available in a simulation study, the root mean
square error (RMSE) was chosen as the preferred measure
of the accuracy of parameter estimates for the mean, stan-
dard deviation, and regression beta coefficients. Higher
RMSE values indicate that parameter estimates for that
distribution are contaminated. Critical values for the Va-
sicek (1976) test, Zamanzade and Arghami (2012) TZ2mn
test, Rahman and Govindarajulu (1997) modified Shapiro-
Wilk test, the Chen and Shapiro (1995) test, the B 2

3 Coin
(2008) test, the Data Driven Smooth Test (Janic & Ledwina,
2009), and D’Agostino (1971) omnibus test were calculated
using 50,000 simulated samples from a standard normal
distribution. For the Chen and Shapiro (1995) and Coin
(2008) tests, which are right tailed, the 95th percentile was
used; for the entropy tests and Rahman and Govindara-
julu (1997) test, which are left tailed, the 5th percentile was
used; and for the D’Agostino (1971) test values were cal-
culated for the lower tail at the 2.5th percentile and up-
per tail at the 97.5th percentile. For the ECF test (Van Zyl,
2017) normality was rejected where

∣∣vn (1)/
p

0.0431/n
∣∣ =∣∣4.8168

p
nVn (1)

∣∣ > z1−α/2. For all other tests the p val-
ues generated by the available functions in R were used in
the analysis. Analyses were performed in R (Version 4.0.0,
R Core Team, 2023) on a PC running Gentoo Linux using
10,000 simulations and a seed of 54321.

Normality tests used in this study

There were 18 different normality tests included in this
study that represent over 5 different classes of univariate
goodness-of-fit statistics. In order to aid interpretation
later in the paper, the abbreviation used in the study, the
test reference, equations, and R functions where the tests
can be found are summarized in Table at the end of this
article.

Population distributions included in this study

The performance of the various normality tests, and ef-
fects on parameter estimates, was evaluated using sim-
ulations across a range of different alternative distribu-
tions. There exist an infinite number of distributions one
could test against and different approaches exist for se-
lecting and characterizing distributions. At the most basic
level distributions can be differentiated as either symmet-
rical or asymmetrical (Montenegro & Alonso, 2015). Yap

TheQuantitativeMethods forPsychology 3062

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.19.4.p302


¦ 2023 Vol. 19 no. 4

and Sim (2011), Farrell and Rogers-Stewart (2006), and Wi-
jekularathna et al. (2022) extend this classification to sym-
metric short-tailed, symmetric long-tailed, and asymmet-
ric distributions. Quessy and Mailhot (2011) suggest four
kinds of alternative distributions; namely, bimodal alter-
natives, kurtosis alternatives, heavy-tailed alternatives, and
mixture of skewness and kurtosis alternatives. Alizadeh
Noughabi and Arghami (2011, 2012), Uyanto (2022) and Za-
manzade and Arghami (2012) categorize distributions into
four categories; namely, symmetric distributions with sup-
port for (−∞,∞), asymmetric distributions with support
for (−∞,∞), distributions with support bounded at (0,∞),
and distributions with support bounded at (0,1). The great-
est number of categories was defined by Seier (2002), who
used a total of 9 categories. The approach taken in this
paper is similar to that of Romāo et al. (2010), who used
symmetrical, asymmetrical and a number of mixed normal
distributions with various shapes. Mixed normal distribu-
tions, or contamination models, have demonstrated their
usefulness as population models to mimic outlier contam-
ination or other properties of real non-normal distribu-
tions across a variety of disciplines (Blair & Higgins, 1980b;
Zumbo & Jennings, 2002). Symmetrical and asymmetrical
distributions were selected based on their utility in previ-
ous simulation studies and to allow for comparisons across
studies. Symmetrical distributions included Student’s t (df
= 5), Logistic, Tukey (shape = -0.25), Tukey (shape = 0.75),
Tukey (shape = 1.05), and Uniform. Asymmetrical distribu-
tions included Weibull (shape = 2, scale = 3), Generalized
Pareto (location = 0, scale = 2, shape = 0), Gumbel (location
= 0, scale = 2), Gamma (shape = 2, rate = 3), asymmetric
Power (location = 0, asymmetry = 2, scale = 0.8, tail decay =
1.5), and asymmetric Laplace (location = 4, scale = 2, asym-
metry = 2). Contaminated population models were created
to mimic parameter estimates from real-life distributions
from the social sciences known to deviate from normal-
ity. They included: time spent eating and drinking per day
(cf., U. S. Bureau of Labor Statistics, 2015), income (cf.,
United State Census Bureau, 2013), age at death (cf., Aus-
tralian Institute of Health and Wealfare, 2015), GPA scores
(cf., University of Wisconsin-Madison, 2017), lawyer start-
ing salaries (cf., National Association for Law Placement,
2015), and age of sexual debut (cf., Bakilana, 2005; Zuma
et al., 2011). These distributions have high contamination
indices justifying their utility for this study; income having
the largest (CI = 1.00), followed by age at death (CI = 0.63),
with only GPA scores having a CI below 0.1 (CI = 0.03).

Results

The results of 10,000 Monte Carlo simulations at sample
sizes from 8 to 120 on the power of normality tests across 18
distributions within three distribution groups is presented

below. The findings regarding specific categories of distri-
bution violations are presented first, followed by an overall
synopsis of the findings. Readers who wish to study tables
providing power for each normality test for each specific
distribution are referred to Appendix B.

Relative Power of Normality Tests for Asymmetric Distri-
butions

For asymmetric distributions the Chen-Shapiro and
Shapiro-Wilk tests had the highest power at lower sam-
ple sizes across the distributions included in this category.
Across all the distributions, Chen-Shapiro and Shapiro-
Wilk statistics were able to correctly reject the null with an
average power of .80 with samples as small as 53 and the
Epps-Pulley 51. The Chen-Shapiro, Shapiro-Wilk, Vasicek
and DBEG tests needed sample sizes as low as 19 in or-
der to attain power of at least .80 for a Generalized Pareto
(location = 0, scale = 2, shape = 0) distribution, whereas
sample sizes of 93 and 95 were needed by Chen-Shapiro
and Shapiro-Wilk respectively to attain the same level of
power with a Weibull (shape = 2, scale = 3) distribution.
The Generalized Pareto distribution has greater skew and
kurtosis (skew = 2, kurtosis = 6.08) than the Weibull (shape
= 2, scale = 3) distribution (skew = 0.63, kurtosis = 0.24),
but both have a proportionally large impact on regression
coefficients compared with the rest of the distributions in
this category. The asymmetric Laplace (location = 4, scale
= 2, asymmetry = 2) had the largest impact on estimates of
the mean and standard deviation with its combination of a
thick tail and skewness (skew= -1.81, kurtosis = 5.42). The
asymmetric Laplace distribution required a sample size of
30 in order to attain a power of .80 with the Chen-Shapiro
Statistic. On the other hand, the Coin B 2

3 statistic only ob-
tained a power of .57 and Bonett-Seier 0.61 with a sample
size of 100 for the same distribution. In order to evalu-
ate the comparative power of normality tests across all the
studied distributions within each category, the Normalized
Root Mean Squared Error (NRMSE) was used as a metric of
the error in classic measures of location, scale and regres-
sion beta coefficients in each distribution. This was then
used to obtain the average power across the various asym-
metric distributions, weighted by the degree to which the
distribution would actually impact parameter estimates.
The NRMSE is a robust measure of the accuracy of mod-
els, estimators, or predictions that allows for comparisons
between distributions with different scales. RMSE is often
normalized by the range, but in this case the MAD was used
for a more robust estimate of scale, resulting in a measure
from 0 to 1. Figure 1 presents the weighted average power
of the six most powerful tests, as well as the least powerful
test. Also represented are the distributions and NRMSE of
parameter estimates for sample sizes from 8 to 120. Ta-
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Figure 1 Graphical representation of results for asymmetric distributions. The normality tests in the legend are ranked
based on their weighted-average power across all distributions in this category for sample sizes below 60, based on their
impact on parameter estimates (NRMSE). The six tests with the highest power in this sample size range, as well as the
statistic with the lowest power are shown in descending order. Also provided are the error deviations in sample estimates
of parameters for centrality, scatter and regression coefficients normalised by the MAD.

bles with simulated power across specific distributions are
provided in the appendices.

Relative Power of Normality Tests for Symmetric Distribu-
tions

For symmetric distributions performance was differenti-
ated between distributions with high and low kurtosis. In
distributions with high kurtosis the Gel-Miao-Gastwirth
and Robust Jarque-Bera tests performed best, whereas
symmetric distributions with negative kurtosis were best
differentiated from normal by the Vasicek and DBEG statis-
tics. Conversely, the Robust Jarque-Bera, Jarque-Bera, and
Lilliefors Kolmogorov-Smirnov tests performed poorly for
platykurtic symmetric distributions, while the DBEG statis-
tic and Vasicek statistic had the lowest power for leptokur-
tic symmetric distributions. In order to reach a power of

.8 with the most powerful statistic (COIN), a sample size
of 36 was sufficient for the Tukey (shape = 1.05) distribu-
tion. This distribution has a relatively small variation (sd =
0.55), but scores are distributed in the shoulders (kurtosis
= -1.21), which may impact on regression coefficient esti-
mates in small samples but does not bias estimates of the
mean and standard deviation. However, even at a sample
size of 120 the tests examined here were not able to cor-
rectly reject the null at better than .50 for Logistic and .74
for the Student’s t(df = 5) distribution. The Logistic and
t(df = 5) distributions are fairly leptokurtic (kurtosislog =
1.2, kurtosist(5) = 5.69), although not as much as the Tukey
(shape = -0.25) distribution (kurtosis = 31.84); impacting
on estimates of centrality and spread, but making their de-
viation from normal not as easily detectable as the Tukey
(shape = -0.25) distribution. The Rahman and Govindara-
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Figure 2 Graphical representation of results for symmetric distributions. The normality tests in the legend are ranked
based on their weighted-average power across all distributions in this category for sample sizes below 60, weighted by
their impact on parameter estimates (NRMSE). The six tests with the highest power in this sample size range, as well
as the statistic with the lowest power are shown in descending order. Also provided are the error deviations in sample
estimates of parameters for centrality, scatter and regression coefficients normalized by the MAD.

julu’s Shapiro-Wilk test, Vasicek, and DBEG tests were able
to achieve .80 power in sample sizes of 41 with low kurtosis
symmetric distributions. Figure 2 presents the weighted-
average power of the six most powerful tests, as well as
the least powerful test, and the distribution representations
and NRMSE of parameter estimates for sample sizes from 8
to 120.

Relative Power of Normality Tests for Mixed Distributions

Normality tests generally had higher power in detecting
departures in the mixed distribution category, compared
to the other two distribution categories, as distributions
had more noticeable deviations from normality and this re-
sulted in greater error in parameter estimates, particularly
in small samples. Tests that consistently performed with
high power in small sample sizes in this category included

Chen-Shapiro, Shapiro-Wilk, Rahman and Govindarajulu’s
Shapiro-Wilk, and Anderson-Darling test statistics. Tests
that performed poorly in this category included Coin B 2

3 ,
Van Zyl’s ECF test, Jarque-Bera test, Robust Jarque-Bera,
Bonett-Seier, and Lilliefors tests. For sample sizes below 18
the Jarque-Bera test performed the worst on average, but it
outperformed van Zyl’s ECF test in samples above 18 and
the Robust Jarque-Bera in sample sizes above 45. The van
Zyl ECF test had lower power on average than the Robust
Jarque-Bera for samples below 50, but had better power in
larger samples. Performance varied depending on the id-
iosyncratic characteristics of each distribution. For exam-
ple, the distribution of lawyer starting salaries was roughly
bimodal with a negative kurtosis (-1.23) and slight skew (-
0.11). With this distribution the Vasicek statistic was able to
attain a power of .8 with a sample as small as 12, whereas
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Figure 3 Graphical representation of results for mixed distributions. The normality tests in the legend are ranked based
on their average power across all distributions in this category for sample sizes below 60, weighted by their impact on
parameter estimates (NRMSE). The six tests with the highest power in this sample size range, as well as the statistic with
the lowest power are shown in descending order. Also provided are the error deviations in sample estimates of parameters
for centrality, scatter and regression coefficients normalized by the MAD.

the Dagostino omnibus test had a power of .32 with a sam-
ple of 120 for the same distribution. On the other hand,
time spent eating and drinking is long-tailed (kurtosis =
1.48) with a positive skew (0.78). This distribution required
a sample size of 67 in order for the Vasicek statistic to reach
a power of .8, with the Bonett-Seier test only reaching a
power of .27 at a sample size of 120. The income distribu-
tion, with the majority of of the sample earning a modest
income but a small proportion of the sample earning 80%
of the total wealth (outliers) far to the right of the distri-
bution, had a disproportionately large error in estimated
regression coefficients. This was followed by GPA and sex-
ual debut distributions. On the other hand, the distribution
representing age at death that has a small peak during in-
fancy a large spread and then strong negative skew (skew =
-1.63, kurtosis = 3.57, MAD = 12.26), had high errors on esti-

mates of central tendency and variability. Figure 3 displays
plots that present the shape of the distributions, NRMSE,
and the power of the 6 most powerful and the least pow-
erful test based on their weighted-average covering sample
sizes ranging from 8 to 120.

Discussion

The results of this study reiterate that GOF normality tests
have severely limited utility for detecting departures from
normality at very small sample sizes (n < 35), and that the
choice of test is very important. There is no single normal-
ity test that performs best for every distribution and at ev-
ery sample size. Using a single omnibus normality test con-
sistently among different types of distributions, which has
been reported to be the practice among many researchers
(Engmann & Cousineau, 2011), will often result in an un-
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Table 1 Tests with high and low power at low sample size for various distributions

Category High Power Low Power Vulnerable parametric test
Asymmteric Chen-Shapiro, Shapiro-Wilk,

Epps-Pulley, Rahman and
Govindarajulu’s SW, Anderson-
Darling

Coin’s B 2
3 , Bonett-Seier, Gel-

Miao-Gastwirth, ECF
Linear mixed models, OLS re-
gression coefficients, and t-
tests

Symmetric –
high kurtosis

Gel-Miao-Gastwirth, Robust
Jarque-Bera, Zamanzade,
D’agostino K 2

DBEG statistic, Vasiczek, Rah-
man and Govindarajulu’s SW

Regression coefficients and
standard errors, and ANOVA

Symmetric –
low kurtosis

DBEG, Vasicek, Rahman and
Govindarajulu’s SW, Coin’s B 2

3

Robust Jarque-Bera, Jarque-
Bera, and ECF

Regression coefficients & stan-
dard error, and t-tests

Mixed Rahman and Govindarajulu’s
SW, Chen-Shapiro, Shapiro-
Wilk, and Vasicek

ECF, Jarque-Bera, Robust
Jarque-Bera, and D’Agostino
omnibus

ANOVA, t-test, linear regres-
sion, and linear mixed mod-
els depending on specific dis-
tribution

acceptable loss of power (Quessy & Mailhot, 2011). In or-
der to detect deviations from normality at an acceptable
level of power, one generally needs sample sizes between
50-100 depending on the population characteristics. Nor-
mality tests should be selected based on their sensitivity
to the distributional characteristics of the population dis-
tribution under investigation, which might be obtained
from previous research. For asymmetric distributions, the
Chen-Shapiro and Shapiro-Wilk tests offered the highest
power at low sample sizes among the alternatives exam-
ined in this study. Previous studies found the Shapiro-Wilk
and Anderson-Darling tests particularly useful at smaller
samples, with the Jarque-Bera and van Zyl ECF tests per-
forming well at larger sample sizes (Alizadeh Noughabi &
Arghami, 2011, 2012; Lafaye de Micheaux & Tran, 2016;
Romāo et al., 2010; Seier, 2002; Van Zyl, 2017; Yap & Sim,
2011; Yazici & Yolacan, 2007). In general, for symmetric
distributions the COIN B 2

3 test, Rahman and Govindara-
julu’s Shapiro-Wilk, Chen-Shapiro, Bonett-Seier, and Gel-
Miao-Gastwirth statistics perform well in small samples (Is-
lam, 2017; Romāo et al., 2010; Quessy & Mailhot, 2011).
However, the degree of skew and type of kurtosis are also
important. For example, the B 2

3 test performs well with
slightly skewed alternatives, but not when alternatives are
highly skewed (Islam, 2019). When symmetric distribu-
tions have short tails and wide shoulders (low kurtosis), the
D’Agostino-Pearson statistic, D’Agostino K 2 statistic, and
Shapiro-Wilk tests have demonstrated high power (Jäntschi
& Bolboacă, 2009; Razali & Wah, 2011; Seier, 2002; Yap &
Sim, 2011). Within this study, the DBEG, Vasiczek, and Rah-
man and Govindarajulu’s Shapiro-Wilk test performed best
for platykurtic symmetric distributions. Among high kur-
tosis distributions the Robust Jarque-Bera, Shapiro-Wilk,
Alizadeh Noughabi and Arghami (2010) entropy based es-
timator, and the Anderson-Darling tests have consistently

performed well (Alizadeh Noughabi & Arghami, 2011, 2012;
Islam, 2017; Thadewald & Büning, 2007; Yap & Sim, 2011).
In this study the Gel-Miao-Gastwirth, Robust Jarque-Bera,
and Zamanzade entropy-based tests performed best for de-
tecting symmetric leptokurtic distributions. Interestingly,
while Zamanzade and Arghami (2012) found the test based
on their entropy estimator to be superior to other entropy-
based tests for symmetric distributions, in this study Va-
sicek performed better on platykurtic distributions. Re-
searchers may use Table 1 as a guide in order to select nor-
mality tests based on two criteria: (1) which is most power-
ful at detecting the types of violations from normality ex-
pected on theoretical grounds for the distribution under
study, and/or (2) which is most powerful for detecting the
types of violations the parametric statistic one is using is
most susceptible to.

Overall, the results suggest that researchers should
not perform conditional testing based on the results of
a normality test at small sample size, as tests are gen-
erally not powerful, and this could inflate Type I errors.
There are many non-parametric, resampling-based, or ro-
bust estimator-based tests available as alternatives to com-
monly used parametric tests (e.g., Cribbie et al., 2012; Fried
& Dehling, 2011; Wilcox, 2012, 2022). For sample sizes be-
tween 50-100 the magnitude of errors in scale and loca-
tion estimates diminishes dramatically and CLT does well
to protect the asymptotic distribution of the test statistic.
However, for some specific distributions (e.g. skew and
heavy tailed), parameter estimates may still be consider-
ably impaired even when sample sizes are 120 or more
(Bradley, 1980; Field & Wilcox, 2017; Wilcox, 2012, 2022).
At the same time, it is not necessary for normality de-
partures to be dramatic for classical estimates of location
and scale to be impaired (Lind & Zumbo, 1993). For this
reason it is advised that researchers perform a sensitivity
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analysis to investigate the empirical question of “how ro-
bust are my findings to violations of the normality assump-
tion?” (e.g., Thabane et al., 2013). The Hogg-Tukey Proce-
dure (so coined by Zumbo & Jennings, 2002) suggests that
both classical and robust tests should be run and their re-
sults compared: when the suitably standardized values of
the test statistics are similar, then the parametric tests re-
sults can be favoured, but when their p values differ sub-
stantially the robust test results should be favoured. In
the context of groups with equal variances, Zimmerman
(2011) proposed that if the t-test and a test based on ranks
differ by more than 0.4, then non-parametric tests should
be favoured. Under the constraints of publication bias
and pressure to publish, this procedure could promote p-
hacking, data-dredging, or fishing for a significant result
(Gelman & Loken, 2014). To avoid this, all test processes
and results should be reported and decisions clearly mo-
tivated by evaluation of the data and insights from previ-
ously published research. Normality tests selected for their
sensitivity to specific deviations from normality in combi-
nation with graphical techniques can be used to evaluate
if normality deviations are the cause for the differences be-
tween classical, non-parametric, or modern robust test re-
sults (Looney, 1995; Seier, 2002). Choosing which statistical
test is best to answer one’s research question and whether
normality violations impact research outcomes are an em-
pirical question best addressed through a review of the evi-
dence using the optimal tools at one’s disposal (Zygmont &
Smith, 2014). This approach is demonstrated in Appendix
C using a fictional study.

Conclusion

Choosing the correct statistic for one’s research question
at small sample sizes is critical as bias in parameter es-
timates is greatest at samples below 35, but reduces dra-
matically in samples between 30 and 50. As sample sizes
increase the Central Limit Theorem may make normality
testing less important, but not completely irrelevant, as
some deviations may still affect parameter estimates and
standard error calculations. The results of the present and
previous research suggest that formal hypothesis tests of
normality should not be used as a conditional check for
selecting between parametric and non-parametric/robust
test statistics. In small samples they lack power to detect
deviations that may matter. Sample sizes of between 50
and 100 are generally needed for GOF tests to detect vio-
lations of the normality assumption with 80% power de-
pending on the specific distribution. However, GOF tests
need to be selected that are sensitive to the types of depar-
tures characteristic of the population distribution. Overall,
the Chen-Shapiro, Rahman and Govindarajulu’s Shapiro-
Wilk, Shapiro-Wilk, Anderson-Darling and Vasicek tests

have the highest power for the greatest range of distribu-
tions at lower sample sizes. When using normality tests,
the choice should be guided by theoretical assumptions,
information about data distributions from previous stud-
ies, and empirical data obtained using graphical methods
(Wijekularathna et al., 2022). Possibly the best approach
for evaluating if violation of normality assumptions is im-
pacting on research outcomes is to use the approach sug-
gested by Hogg (1977a, 1977b), Tukey (1977), Zumbo and
Jennings (2002), and Zimmerman (2011), and supported in
this paper. This involves making the question of which test
statistic to use – in light of the normality assumption – an
empirical question to be answered through sensitivity anal-
ysis. Parametric, non-parametric and robust alternatives
should all be performed and reported. If they produce the
same answer, normality is not a concern. If there are no-
table differences the possibility of normality being a causal
mechanism for these differences should be evaluated using
the available empirical and theoretical evidence at hand.
Such evidence can be collected by utilizing graphical anal-
yses and GOF normality tests known to be powerful in de-
tecting specific distributional violations at small samples
(e.g. 50 – 100). How to perform such an analysis is demon-
strated in Appendix C. It is critical to note that outliers and
idiosyncratic deviations in distributions, such as bimodal-
ity, are most probably more influential for parameter es-
timates than solely skewness or kurtosis at small sample
sizes. All analyses should be reported to promote informed,
transparent, reproducible, and ethical research. Future re-
search should examine the utility of the Hogg-Tukey pro-
cedure in varied contexts and evaluate its impact on power
and Type I error across the research processes.
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Tests based on the empirical distribution function (EDF)
AD The Anderson-Darling test (Anderson & Darling, 1954; D’Agostino & Stephens, 1986)

A =−n − 1

n

n∑
i=1

[2i −1][ln(p(i ))+ ln(1−p(n−i+1))], where p(i ) =Φ([x(i ) −x]/s)

ad.test() in nortest

LKS The Lilliefors (1967) modification of the Kolmogorov-Smirnov test
D = max{D+,D−} with D+ = max

i=1,...,n
{i /n −p(i )}, D− = max

i=1,...,n
{p(i ) − (i −1)/n}, where p(i ) =Φ([x(i ) −x]/s)

lillie.test() in nortest

Tests based on measures of the moments
B-S The Bonett-Seier (2002) test

Tw =
p

n +2.(ŵ −3)

3.54
where ŵ = 13.29

[
ln

p
m2 − ln

(
n−1

n∑
i=1

|xi −x|
)]

statcompute(17, ...) in PoweR

DP The D’Agostino-Pearson (1973) K 2 test

K 2 = Z 2(
√

b1)+Z 2(b2) where Z (
√

b1)and Z (b2)are the normal approximations for skewness and kurtosis
statcompute(6, ...) in PoweR

JB The Jarque-Bera (1987) test

LMN = N
{√

b̂1

6
+ (b̂2 −3)2

24

}
where b̂1 = û2

3

û3
2

and b̂2 = û4

û2
2

statcompute(7, ...) in PoweR

RJB The Robust Jarque-Bera test (Gel & Gastwirth, 2008).

RJB = n

6

( m3

J 3
n

)2 + n

64

( m4

J 4
n

−3
)2

where Jn =
p
π/2

n

n∑
i=1

|xi −M |
statcompute(9, ...) in PoweR

Regression and correlation tests
COIN The B2

3 Coin (2008) test
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z(i ) =β1.αi +β3.α3
i , where β1 andβ3 are fitting parameters and ai are expected values of standard normal order statistics

statcompute(30, ...) in PoweR

CS The Chen-Shapiro (1995) test

C S = 1

(n −1).s

n−1∑
i=1

x(i+1) −x(i )

Mi+1 −Mi
statcompute(26, ...) in PoweR

DAGO D’Agostino (1971) omnibus test

D =
n∑

i=1
(i+ n+1

2 )X(i )

n2pm2
statcompute(24, ...) in PoweR

RG-SW The Rahman and Govindarajulu (1997) modification of the Shapiro-Wilk test
ai =−(n +1)(n +2)φ(mi )[mi−1φ(mi−1)−2miφ(mi )+mi+1φ(mi+1)] where m0φ(m0) = mn+1φ(mn+1) = 0
statcompute(23, ...) in PoweR

SW The Shapiro-Wilk (1965) test

W =

{ k∑
i=1

a(n−i+1)(x(n−i+1) −x(i ))
}2

n∑
i−1

(xi −x)2
where x(i )s are the ordered statistics

shapiro.test() in nortest

Empirical likelihood GOF tests based on sample entropy
DBEG Miecznikowski et al. (2013)

Vn = min
1≤m<n1−δ

(2πes2)n/2
n∏

i=1

2m
n(X(i+m)−X(i−m))

DbEmpLikeGOF() in package of same name
VAS Vasicek (1976) test

T Vmn = exp{HVmn }

σ̂
, where HVmn = 1

n

n∑
i=1

log
{ n

2m
(X(i+m) −X(i−m))

}
Entropy.Tests() and HV() functions provided in Appendix A

ZAM Zamanzade and Arghami (2012) T Z 2mn test

T Z 2mn = exp{H Z 2mn }

σ̂
, where H Z 2mn =

n∑
i=1

wi l og {bi } with wi =


m+i−1∑n

i=1 wi
if 1 < i < m,

2m∑n
i=1 wi

if m +1 < i < n −m

n−i+m∑n
i=1 wi

if n −m +1 < i < n

Entropy.Tests() and HZ2() functions provided in Appendix A
Empirical characteristic function class tests
ECF Van Zyl’s (2017) empirical characteristic function test.

vn (1) = log
(∣∣φ̂S (1)exp(−1/2)

∣∣) , where
p

n (vn (1)) ∼ N (0,0.0431)
ecf() function provided in Appendix A.

EP The Epps-Pulley test (Epps & Pulley, 1983)

T (α) = n−2 ∑n
j=1

∑n
k=1 exp

{
− 1

2

(
X j −Xk

)2
/
(
α2S2)}−2n−1(

1+α−2)− 1
2

n∑
j=1

exp

[
− 1

2

(
X j − X̄

)2
/
{
S2 (

1+α2)}]+ (
1+2α−2)− 1

2

statcompute(31, ...) in PoweR

Other tests
GMGW The Gel-Miao-Gastwirth Rs J test (2007)

Rs J = s/Jn where Jn =
p
π/2

n

n∑
i=1

|xi −M |
statcompute(33, ...) in PoweR

DDST Data driven smooth test (Janic & Ledwina, 2009).

W ∗
k (γ̃) =

[ 1p
n

n∑
i=1

ℓ∗(Zi ; γ̃)
][
τ∗(γ̃)

]−1[ 1p
n

n∑
i=1

ℓ∗(Zi ; γ̃)
]′

, where γ̃ is an approriate estimator ofγ

andτ∗(γ̃) =Covθ0

[
(ℓ∗(Zi ; γ̃)

]′ [
ℓ∗(Zi ; γ̃)

]
ddst.norm.test() in ddst

Appendices follows.
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Appendix A Code used for functions not contained in R packages found in the CRAN

# Functions for entropy based tests

# Kernel density estimator

f <- function(a,x){

n=length(x);h=((4/(3*n))^(1/5))*sd(x);

p=(1/(n*h))*sum(dnorm((a-x)/h))

return(p)

}

#Vasicek's Entropy estimator

HV <- function(x,m){

n=length(x)

x=sort(x)

H=c()

c=2

for(i in 1:n) {

a1=i-m

a2=i+m

if(a1<1)a1=1

if(a2>n)a2=n

H=c(H,log(n*(x[a2]-x[a1])/(c*m)))

}

return(mean(H))

}

#Zamanzade's second entropy estimator

HZ2=function(x,m){

x<-sort(x)

n<-length(x)

Z2<-c()

W<-c()

for(i in 1:n){

if(i<=m) W[i]<-m+i-1

if(i>m&&i<=(n-m)) W[i]<-2*m

if(i>(n-m)) W[i]<-n-i+m

k1<-max(1,(i-m))

k2<-min(n,(i+m))

d<-0

for(j in k1:(k2-1)) d<-(f(x[j+1],x)+f(x[j],x))/2*(x[(j+1)]-x[j])+d

a<-x[k2]-x[k1]

Z2[i]<-log(a/d)

}

W<-W/sum(W)

return(sum(W*Z2))

}

#Function to run either Vasicek or Zamanzade's test

#arguments include: x = data, m = window size (integer smaller than sample size/2), and test is

1 for Vasicek or 2 for Zamanzade

Entropy.Tests<-function(x,m,test){

if(test==1) H<-HV(x,m)

if(test==2) H<-HZ2(x,m)
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S<-sqrt(sum((x-mean(x))^2)/length(x))

return(exp(H)/S)

}

#Function for van Zyl's ECF test

ecf <- function(t, x) {

Vectorize( function(t) mean(exp(complex(real=0, imaginary=1)*t*x)) )(t)

}

zyl_test <- function(x) log( Mod(ecf(1, scale(x))/exp(-1/2)) )

# To run the test:

zyl_test(IQ$N)/(sqrt(0.0431/n)

Appendix B Power tables

The following three tables (B.1 to B.3) provide the power for each normality test for six different distributions within each
of the three categories at sample sizes of 20, 40 and 80.
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Appendix C Demonstration

This supplementary material is intended to demonstrate the procedure advocated in the article manuscript for deciding
between classical GLM models, non-parametric test statistics, and robust methods while taking into account the effect of
possible violations of the normality assumption. The data used in this vignette are response time data from a hypothetical
study of the effects of nicotine on the colour-Stroop task using smoking-related cues (e.g. tobacco, cigar, smoke). In the
hypothetical study we are comparing the performance of a sample of 45 non-smokers (have not smoked within the last
six months) and 62 active smokers (were actively smoking just before the trials start). The participants are otherwise sim-
ilar in terms of demographic, medical, and cognitive performance metrics. Generally, research shows that active smokers
should complete Stroop trials faster but have more errors; but when presented with smoking-related cues, smokers take
longer than non-smokers on the Stroop task (Alimohammadi et al., 2019; Masiero et al., 2019). Instructions are provided
for replicating these methods using the R statistical programming environment (R Core Team, 2023). If you do not already
have R installed on your PC, follow the following generic instructions available online to install R and R-Studio, which I rec-
ommend as an IDE (e.g.: https://teacherscollege.screenstepslive.com/a/1108074-install-r-and-r-studio-for-windows). If
you are new to R, an introductory course would be recommended (e.g. https://learndigital.withgoogle.com/digitalgarage/
course/introduction-to-r, https://www.datacamp.com/courses/free-introduction-to-r or https://coursera.org/learn/r-programming).
Readers can download from the journal’s web site the dataset used in this supplementary document in order to replicate
the analysis themselves. Load the data into R and look at the structure of the data using the following commands (substi-
tuting /FileLocation/ResponseTimeData.Rdata with the file location on your computer):

load("/FileLocation/ResponseTimeData.Rdata")

str(RTdata)

Next one should install the required packages containing the functions we will use later (if you do not already have
them). The following commands will only install those packages that are not already installed on your computer from the
Comprehensive R Archive Network (CRAN). You will also need to install PoweR and dbEmpLikeGOF from the archive, as
they are no longer available on CRAN, and the rogme package from github as it is not available yet on CRAN:

RP <- c("car","dplyr","rbtt","rempsyc","rstatix","devtools","nortest","vioplot")

install.packages(setdiff(RP, rownames(installed.packages())))

devtools::install_version("PoweR", version = "1.0.7")

devtools::install_version("dbEmpLikeGOF", version = "1.2.4")

devtools::install_github("GRousselet/rogme")

Research Question

We will be examining whether there is a difference in response times based on smoking group. Traditionally, if testing the
normality assumption, most researchers would have run a Kolmogorov-Smirnov test (Arnold & Emerson, 2011; Engmann
& Cousineau, 2011; Pedrosa et al., 2015). Having done so they would have concluded that both non-smoker (D = 0.18,
p = .09) and active smoker distributions are normally distributed (D = 0.10, p = .57). They would then most likely
have followed on with a parametric Welch t-test. However, using a more powerful normality test like the Shapiro-Wilk
or Anderson-Darling would have resulted in rejecting normality for the distribution of response times for non-smokers
(W = 0.88, p < .001; A = 1.97, p < .001) and active smokers (W = 0.95, p = .017; A = 0.8, p = .036). Rather than using
this two-step process or ignoring the normality assumption and assuming that the central limit theorem (CLT) will pro-
tect against normality deviations, it was argued in the article manuscript that a sensitivity analysis would be preferable to
make the influence of assumptions on our test statistic an empirical question. We will compare the results to our research
question using four methods: the independent samples Welch t-test, Wilcoxon rank sum test, robust bootstrapped t-test,
and t-test based on trimmed mean. If there is no significant difference in these results (Zimmerman, 2011), we can con-
clude that violation of assumptions was either negligible or protected by the CLT as a result of sufficient sample size. If the
differences among these test statistics are notable, then we can use graphical methods and normality tests to diagnose the
cause and guide our selection of results. By reporting all analyses and using all the information available to motivate an
outcome we are engaging in transparent, informed, and ethical research.

We can run the parametric Welch t-test, the non-parametric Wilcoxon rank-sum test, robust bootstrapped t-test, and
Yuen’s t-test based on trimmed means and with bootstrapped effect size confidence intervals using the following R com-
mands:
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Figure C.1 Histogram and density plots for sample distribution and normal distribution. The solid yellow line denotes a
normal distribution with the same mean and standard deviation as the data, the dotted black line denotes the smoothed
density distribution of the sample data

t.test(RT~group, alternative='two.sided', conf.level=.95, data=RTdata, var.equal=F)

wilcox.test(RT ~ group, alternative='two.sided', data=RTdata, exact=TRUE)

rstatix::wilcox_effsize(RT ~ group, paired=F, data=RTdata, ci=T, ci.type="bca")

rbtt::rbtt(x = RTdata$RT[RTdata$group == "Active smoker"],

y = RTdata$RT[RTdata$group == "Non-smoker"], n.boot=50000, method=2)

WRS2::yuen(RT ~ group, data = RTdata, tr = 0.2)

WRS2::yuen.effect.ci(RT ~ group, data = RTdata, tr = 0.2, nboot = 10000)

The Welch two-sample t-test (t (76.34) = 1.47, p = .146, 95% CI [-0.10, 0.68]) and the robust bootstrapped t-test as-
suming unequal variance (t = 1.47, p = .157, 95% CI [-0.12, 0.70]) both suggest that there are no significant differences in
response time between smokers and non-smokers. On the other hand, the Wilcoxon rank sum test (W = 1761, p = .02;
r = 0.22, 95% CI [0.03, 0.41]) and Yuen’s t-test based on 20% trimmed means (t (d f = 46.69) = 2.02, p = 0.049, 95% CI
[0.002, 0.92]; d = 0.30, 95% CI [0.04, 0.52]) suggest there is a significant difference in response times with a small effect
size. The t-tests are aimed at testing if the populations means are equal. On the other hand, the Wilcoxon rank sum test is
testing if the medians are equal, or more specifically, if the distribution of ranked scores of one group tend to have higher
scores than the other. According to Zimmerman (2011), the robust findings should be favoured; and graphical methods,
descriptive statistics, as well as normality tests can be used to ascertain why the test results vary and validate the choice of
methods.

Graphical methods

Graphical methods are particularly useful for identifying the causes of normality violations. Histograms and density plots
allow for a quick intuitive evaluation of the general shape of any distribution of sample data. These are demonstrated in
Figure C.1, and can be achieved using the following commands:

par(mfrow = c(2,1), bg="lightgrey")

hist(RTdata$RT[RTdata$group == "Non-smoker"] , prob=TRUE , breaks=8 , col="forestgreen",

xlim=c(min(RTdata$RT),max(RTdata$RT)), freq=FALSE, xlab="" , ylab="Non-smokers",

main="", col.lab="darkgrey")

lines(density(RTdata$RT[RTdata$group == "Non-smoker"] , adjust=1) , lty="dotted",

col="black" , lwd=2)
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Figure C.2 Violin plot of response times compared by group. The yellow triangle denotes the sample mean for each group,
a boxplot is overlaid in order to display the median, inter-quartile range, and any outliers (represented by the solid black
circle in the active smoker group)

lines(density(rnorm(1e+07 , mean(RTdata$RT[RTdata$group == "Non-smoker"]),

sd(RTdata$RT[RTdata$group == "Non-smoker"]))) , lty="solid" , col="yellow" , lwd=1)

hist(RTdata$RT[RTdata$group == "Active smoker"] , prob=TRUE , breaks=8 , col="darkred",

xlim=c(min(RTdata$RT),max(RTdata$RT)), freq=FALSE, xlab="" , ylab="Active smokers",

main="", col.lab="darkgrey")

title(xlab="Response time in seconds", col.lab="black")

lines(density(RTdata$RT[RTdata$group == "Active smoker"] , adjust=1) , lty="dotted",

col="black" , lwd=2)

lines(density(rnorm(1e+07 , mean(RTdata$RT[RTdata$group == "Active smoker"]),

sd(RTdata$RT[RTdata$group == "Active smoker"]))) , lty="solid" , col="yellow", lwd=1)

Another very useful method for plotting data, which makes the quartiles, median and outliers easily identifiable, as
well as a quick evaluation of centrality, scatter and skewness, is the boxplot. Alternatively, the violin plot (see Figure C.2)
combines the visual representation of shape from a (mirrored) kernel density estimate with the key summary statistics
of a boxplot (Adler, 2005; Hintze & Nelson, 1998). Producing a violin plot of the response time data using the ggplot2

package (Wickham, 2016) is possible with the following code:

ggplot2::ggplot(RTdata,aes(x=group, y=RT, fill=group)) +

geom_violin() +

scale_fill_manual(values=c("darkred", "forestgreen")) +

geom_boxplot(width=0.1, fill="white",color="black",alpha=0.7) +

stat_summary(fun = mean, geom = "point", shape = 18, size =4, color = "yellow") +

coord_flip() + theme(legend.position = "none") + ylab("Response time in seconds")

Quantile-quantile and probability plots (see Figure C.3) are also very useful for detecting outliers and other deviations
from normality. Skewness is visible when the slope of the data is steep initially and then levels out (negative skew) or is

TheQuantitativeMethods forPsychology 3272

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.19.4.p302


¦ 2023 Vol. 19 no. 4

fairly level initially and then increases exponentially upwards towards the end (positive skew). The Q-Q plot tends to have
a stretched-out N shape (lower end drops below the line, higher end rises above the line) for long-tailed distributions and
a stretched-out S shape (lower end above the line and higher end below the line) for short-tailed distributions. Outliers
are visible as points that deviate notably from the line relative to other points. Probability plots have the advantage of
discriminating in regions of high probability density, consequently deviations in the middle of a Gaussian distribution are
more apparent (Das & Imon, 2016).

The qqPlot function in the car package (Fox & Weisberg, 2011) is particularly useful for interpretation as it includes
a 95% confidence interval and allows the user to reference against a variety of distributions. This allows one to visually
test whether there is a better fit to a Gaussian or another distribution. The same can be achieved using the ggplot2

(Zimmerman, 2011) and qqplotr (Almeida et al., 2018) functions. The following code can be used to produce the Q-Q
plot in Figure C.3 using the RT data:

library(qqplotr)

ggplot2::ggplot(RTdata,aes(sample=RT, fill=group)) +

stat_qq_band(bandType = "boot") + stat_qq_line() + stat_qq_point() +

labs(x = "Theortical quantiles from a normal distribution", y="Quantiles based on RT

distribution") +

scale_fill_manual(values=c("darkred","forestgreen")) +

facet_grid(rows= vars(group)) +

theme(legend.position = "none", strip.background = element_rect(fill="white",

color="darkgrey"), strip.text = element_text(color="darkgrey"))

The detrended probability plot (see Figure C.4) may be more intuitive for some people to quantify and compare devia-
tions, it produces a plot with deviations along the range of quantiles presented horizontally. It can be produced using the
code provided below:

# Detrended probability plot based on code by Vincent Zoonekynd

# Load the function using the following:

detrended.prob.plot <- function (dat, xlab="Standardised normal scores",

ylab="Deviation from normal", main="", colordat="blue")

{

x <- sort(na.omit(dat))

a1 <- (quantile(x, .75) - quantile(x, .25)) / 1.34898

a0 <- quantile(x, .25) - a1 * -0.6744898

x <- x - (a0 + a1 * qnorm(ppoints(length(x))))

y <- qnorm(ppoints(length(x)))

plot(x ~ y, xlab=xlab, ylab=ylab, main=main, col=colordat, pch=19, col.main="darkgrey")

abline(h=0, col="black")

}
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Figure C.3 Q-Q plot of numerical IQ scores

# Run the plot with the following:

par(mfrow = c(2,1), bg="lightgrey")

detrended.prob.plot(dat = RTdata$RT[RTdata$group == "Non-smoker"],

colordat = "forestgreen", xlab="", main="Non-smoking group")

detrended.prob.plot(dat = RTdata$RT[RTdata$group == "Active smoker"],

colordat = "darkred", main="Active smoking group")

Descriptive statistics

When data are normally distributed measures of central tendency (mean, median, and mode) should be equal. Measures
of skewness and kurtosis provide valuable indicators of deviations from normal. The describeBy function that forms part
of the excellent psych package (Revelle, 2016) can be used to obtain these statistics for each group using the following
code:

psych::describeBy(RTdata$RT , RTdata$group, trim=0.2, type=3)

Descriptive statistics concur that response times for non-smokers have a slightly lower central tendency, flatter and
wider distribution, and are more positively skewed with a slightly longer right tail (X̄ = 1.25, X̄ tr i mmed(20%) = 0.99, md =
0.91, sd = 1.13, mad = 0.98, skew = 0.81, kur tosi s =−0.63) when compared to that of active smokers (X̄ = 1.54, X̄ tr i mmed(20%) =
1.45, md = 1.36, sd = 0.83, mad = 0.85, skew = 0.72, kur tosi s = 0.17). The descriptive statistics and graphical analyses
taken together suggest that active smokers tend to have less variation in response times and deviate less from a normal
distribution, although both groups are positively skewed. This corresponds with the general understanding that response
times are positively skewed in the population (van Zandt, 2002). We could test whether the deviation from a Gaussian dis-
tribution is statistically significant using the Anderson-Darling, DBEG, Gel-Miao-Gastwirth, and Shapiro-Wilk tests. The
DBEG and Gel-Miao-Gastwirth statistics are particularly sensitive to deviations from normal within symmetrical distri-
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Figure C.4 Detrended normal probability plot

Table C.1 The p value from various normality tests for each smoking condition

group AndersonDarling DBEG GelMiaoGastwirth ShapiroWilk
ActiveSmoker .04 .06 .28 .02
NonSmoker .00 .00 .49 .00

butions, whereas Shapiro-Wilk and Anderson-Darling are more sensitive to asymmetrical and mixed distributions. The
results are formatted into Table 1, using the nice_table() function from the rempsyc package (Thériault, 2022) using
the following code:

library(dplyr)

RTdata %>% group_by(group) %>%

summarise(AndersonDarling = nortest::ad.test(RT)$p.value, DBEG = dbEmpLikeGOF::dbEmpLikeGOF(

x=RT, testcall="normal", pvl.Table = F, num.mc=50000)$pvalue, GelMiaoGastwirth = PoweR::

statcompute(33, RT)$pvalue, ShapiroWilk = shapiro.test(RT)$p.value) %>%

rempsyc::nice_table(,title=c("Table 1","The p values from various normality tests across

groups"))

These findings suggest that firstly, the choice of normality test is important (Gel-Miao-Gastwirth has low power in
asymmetric distributions), and secondly that the RT data are not distributed according to a normal/Gaussian distribution
in each group. In this case we should favour the results from the robust statistics reported earlier, supported by the graph-
ical analysis and normality test results. We could conclude that while there may not be a significant difference in group
means (based on standard and robust t-tests), there does seem to be a significant difference in response time distributions
between groups (based on the Wilcoxon and Yuen’s tests). When working with response time data, it is advisable to analyse
data using distribution functions, which work well especially with larger sample sizes (Whelan, 2008). Hierarchical shift
functions are particularly useful (Rousselet & Wilcox, 2020). This can be done using the rogme package (Rousselet et al.,
2017), which shows that for the first three deciles non-smokers response times are statistically significantly faster than the
active smokers, and with the difference becoming smaller from the 3rd to 7th decile, until active smokers have marginally
faster response times in the last two deciles (see figure C.5). Taking into account the positive skew in the distributions,
this would explain why we would expect a person picked at random from the non-smoking group to respond faster than
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Figure C.5 A comparison between active smokers and non-smoker response times across deciles. Plot A provides a 1-
dimensional scatterplot for each group with differences between deciles colour-coded, and the median identified by a
thicker marker. Plot B provides an indication of the differences between groups at each decile point with 95% bootstrap
confidence intervals for each comparison.

someone picked at random from the active smoking group, even if the overall means are not significantly different. The
code used to produce graphs of the decile comparison across groups is provided below:

library(ggplot2)

library(rogme)

shiftfunc <- shiftHD(RTdata, RT ~ group, nboot = 10000)

DecComPlot <- SFplot(shiftfunc, plot_theme = 1, symb_size = 3, diffint_col = "darkgrey")

DecComPlot <- add_sf_lab(psf, shiftfunc, y_lab_nudge = .1, text_size = 2)

ScatPlot <- plot_scat2(data = RTdata, formula = RT ~ group, xlabel = "", ylabel = "Scores",

alpha = .3, shape = 21, colour = "grey10", fill = "grey90") + coord_flip()

DecPlot <- plot_hd_links(ScatPlot, shiftfunc[[1]], q_size = 1, md_size = 1.5, add_rect = TRUE,

rect_alpha = 0.1, rect_col = "grey50", add_lab = TRUE, text_size = 5)

CompPlot <- cowplot::plot_grid(DecPlot, DecComPlot[[1]], labels=c("A", "B"), ncol = 1,

nrow = 2, rel_heights = c(1, 1), label_size = 20, vjust = 1, scale=.95)

Conclusion

The analysis demonstrated here has illustrated the importance of informed, comprehensive, and transparent data analysis
processes. Following the default two-step procedure -– of using the Kolmogorov-Smirnov test to check for normality
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followed by the t-test — one would have concluded that there is no difference between groups. Ignoring the normality
assumption would also have led to an incomplete understanding of the research outcomes. Using the approach originally
suggested by Hogg (1977a, 1977b) and Tukey (1977), discussed by Zumbo and Jennings (2002), and further developed by
Zimmerman (2011); this demonstration has shown the value of running both classical tests and robust tests together, and
then using graphical and normality tests selected for their sensitivity to different deviations from normality, to explain
any significant differences between classical and robust test outcomes. In most cases the results should be the same, but
when they differ substantially all the results should be reported in the interest of ethical and transparent research, and the
procedures demonstrated here used to guide interpretation.

Open practices

The Open Data badge was earned because the data of the experiment(s) are available on the journal’s web site.
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