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Abstract This paper provides a tutorial for analyzing psychological research data with GAMLSS, an
R package that uses the family of generalized additive models for location, scale, and shape. These
models extend the capacities of traditional parametric and non-parametric tools that primarily rely
on the first moment of the statistical distribution. When psychological data fails the assumption
of homoscedasticity, the GAMLSS approach might yield less biased estimates while offering more
insights about the data when considering sources of heteroscedasticity. The supplemental material
and data help newcomers understand the implementation of this approach in a straightforward
step-by-step procedure.
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Introduction

Most statistical parametric inferential methods in be-
havioural sciences assume normality and homoscedastic-
ity (Mair & Wilcox, 2020). Over-reliance on these assump-
tions, however, has been deemed problematic since the
seminal paper of Micceri (1989), as he was among the first
ones to pinpoint the non-normal shape of psychological
data. Such data are characterized by heavy tails (e.g., the
Log-Normal distribution), asymmetry, multi-modality, and
modes outside the mean-median interval (e.g., Bono et al.,
2017).

Empirical research in behavioural sciences has at least
three interrelated strategies for data analysis. Mair and
Wilcox (2020) identified them as 1) testing assumptions,
2) data transformation, and 3) employing robust statistical
methods. Here, we add a fourth strategy that relies on ap-
plying the family of “generalized additive models for loca-

tion, scale, and shape” (GAMLSS). GAMLSS is a powerful
statistical modeling framework which extends the capabil-
ities of generalized linear models introduced by Rigby and
Stasinopoulos (2005). This family of models emerged un-
der the assumption that the first moment of a statistical
distribution (i.e., mean) is not necessarily the only help-
ful parameter for inferential purposes (Kneib, 2013). What
GAMLSS offers in this regard is a wide variety of regression
models, where all the parameters of the assumed distribu-
tion for the dependent variable can be modelled as addi-
tive functions of the predictor variables. Indeed, GAMLSS
provides over 100 continuous, discrete, and mixed distri-
butions for modelling several types of dependent variables.
Furthermore, the analyst can use truncated, censored, log,
and logit transformations and finite mixture versions of all
these distributions.

GAMLSS is an encompassing set of techniques that
contains, in this order of sophistication, linear models (LM;
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also known as ordinary least squares or OLS), general-
ized linear models (GLM), and generalized additive mod-
els (GAM). Although GAMLSS offers an ample gamut of
cutting-edge statistical algorithms, we believe GAMLSS has
three main features that make it a powerful and flexible
semi-parametric tool for data analysis. First, GAMLSS al-
lows fitting the response variable via an ample range of
continuous, discrete, and mixed distributions. For exam-
ple, LM is limited to the Normal distribution, and GLM
is limited to distributions from the exponential family (in-
cluding the Normal distribution). Second, GAMLSS allows
the usual linear fitting of the covariates (as LM and GLM
do) and non-linear fitting via smoothing algorithms (i.e.
GAM). Such smoothers include penalized smooth terms
(e.g. P-splines), neural networks, and spatial and random
effects. For the case of categorical variables, GAMLSS al-
lows penalization to reduce the number of levels. Third,
GAMLSS enables the modeling of the covariates’ impact
on all the distribution parameters used to describe the re-
sponse variable. That is, while LM and GLM (including
their mixed-model versions) can estimate the effects of co-
variates on the mean response only, GAMLSS enables to in-
vestigate if the covariates have effects on the location, scale
(i.e. variance), and shape (e.g., skewness or kurtosis) of the
response variable. Thus, GAMLSS stands as a broader ap-
plicable alternative to LM without suffering from the prob-
lems that emerge from its fundamental, often non-valid as-
sumptions, such as homoscedasticity. Lastly, it is worth
noting that present variations of GAMLSS render it appro-
priate for machine learning analyses, such as distributional
regression trees and forests (see for example, the work of
Klein, 2024 and Constable et al., 2023).

GAMLSS has been featured in several disciplines, in-
cluding and not limited to scientometrics (Correa et al.,
2022), nutrition sciences (Vasiljevic et al., 2019), or trans-
portation (Hajmohammadi et al., 2019). In psychology,
we have observed two types of usages: psychological test
norming (Timmerman et al., 2021), neuroimaging norming
(Dinga et al., 2021), or as a statistical method (Coupé, 2018;
Campitelli et al., 2017). The current work provides an ex-
tension of this last type of usage. In the next section, we of-
fer a minimum of technical details necessary for a basic un-
derstanding of the gamlsspackage (Stasinopoulos & Rigby,
2007). We revisited the data of Gignac and Zajenkowski
(2020) to illustrate some of the most important capabilities
of the gamlss package for psychological research, particu-
larly about the modelling of heteroscedasticity. The work
by Gignac and Zajenkowski (2020) aligns perfectly with our
intentions as it illustrates a unique situation in which the
results from the heteroscedasticity test can be interpreted
as supportive evidence for the Dunning-Kruger hypothe-
sis. The supplementary material accompanying this tuto-

rial provides a more fine-grained description of the syn-
taxes, calculations, and data interpretation from the results
obtained as a reanalysis of the empirical findings by Gignac
and Zajenkowski (2020).

Psychological Data Revisited

This tutorial examines a data set on the Dunning-Kruger
Effect by Gignac and Zajenkowski (2020). This effect
was originally studied in personality and social psychol-
ogy (Kruger & Dunning, 1999) and refers to the simple
idea that people’s ignorance is often invisible to them.
The meta-ignorance (i.e., ignorance of ignorance) emerges
as the result of a lack of expertise and relies on disbe-
lieves and background knowledge that is not appropri-
ate for providing correct answers to a variety of questions
(Dunning, 2011). Based on these considerations, study-
ing the Dunning-Kruger Effect requires the analysis of self-
assessed intelligence and comparing it with objective met-
rics. The raw data that was made available by Gignac
and Zajenkowski (2020) on the Open Science Framework
(osf.io/dg547), consist of a CSV file with 929 rows and 56
variables described as follows: 46 variables related to the
Raven_IQ results and score transformations, 5 variables re-
lated to the SAIQ test, 2 variables with demographic infor-
mation (sex and age), one variable (study) identifying each
one of the three samples used by Gignac and Zajenkowski
(2020) in their study and finally, two variables used to iden-
tify the participants. The “self-assessed intelligence ques-
tionnaire” (SAIQ) is on a discrete scale ranging from 1 to 25,
while the intelligence objective metric (Raven_IQ) resulted
from applying the Advanced Progressive Matrices (Raven
et al., 1994). If the Dunning-Kruger Effect is correct, the
results from the objective metric of IQ (Raven_IQ) and the
self-assessment of intelligence (SAIQ) should show a par-
ticular resulting pattern in which the regression residuals
should be larger at the lower-end of the measures range,
and that had been tested using heteroscedasticity tests,
such as the Glejser test (Machado & Santos Silva, 2000) used
by Gignac and Zajenkowski (2020). In this context, we want
to show how the GAMLSS could be used as an alternative
test to evaluate the Dunning-Kruger Effect.

GAMLSS in practice

GAMLSS functionalities are available through two main R-
based packages: the gamlsspackage and thegamlss.dist
package. The GAMLSS Team provides both packages
and are part of the packages needed to implement the
framework described in the book “Flexible Regression and
Smoothing Using GAMLSS” in R by Stasinopoulos et al.
(2017). The gamlss package provides the functions for fit-
ting the models, and the gamlss.dist package offers ex-
tensions to the lm(), and glm() functions from the stats
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Figure 1 Empirical relationships between an objective measurement of human intelligence and a subjective self-report
of it, as functions of other two qualitative variables
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package (R Core Team, 2023) and to the gam() function
from the gam package (Hastie, 2020) for generalized addi-
tive models. The gamlss package needs the gamlss.dist

package installed to work.

Installation setup and instructions for reproducibility

Installing both the gamlss and the gamlss.dist is
straightforward through the Rtudio built-in “install” but-
ton. Sometimes the user might find interesting to work
with a third related package called gamlss.util, which
is not available through RStudio as it was archived
on 2020-09-03. As it is available online (https://
github.com/cran/gamlss.util), users can download it via
devtools::install_github("cran/gamlss.util").
After these preliminary steps, the user can run GAMLSS
functionalities like any other standard R package. To fa-
cilitate the reproduction of the results that will be shown
below, interested readers can download and knit an RMark-
down file (GAMLSS Tutorial for Psychological

Data.Rmd) from the following GitHub repository: https:
//github.com/jcorrean/GAMLSS4PsycData. We encourage
interested readers to use RStudio to open this Rmd file to
knit and reproduce the same results reported below.

First Step: Data Linearity Scrutiny

A recommended practice for data analysts is initializing
data examination by scrutinizing data linearity assump-
tions. Here, we used a LOESS smoother for each variable
in the model. A LOESS smoother selectively weights points

in the regression. We can also overlay the standard regres-
sion line as the original paper of Gignac and Zajenkowski
(2020) to determine how the LOESS smoothing (for detect-
ing non-linearities) of data compares to linear regression.
The following syntax yields a coloured scatterplot between
the principal variables in the analysis: an objective mea-
surement of human intelligence (Raven_IQ) and a subjec-
tive self-report of it (SAIQ) plotted by discriminating par-
ticipant sex and the origin of the data (study variable which
can take three values which represent the names of the
three different samples used by Gignac and Zajenkowski,
2020).

# Loading libraries

library(ggplot2)

# Plotting data

ggplot(data, aes(x=Raven_IQ,y=SAI_winsorized_IQ)) +

stat_smooth(method="LOESS", alpha=.2) +

stat_smooth(method="lm", formula=y ~ x, color="red",

fill="red", alpha=.2) +

geom_point( aes(colour=study, shape=sex), size=2.3) +

scale_color_manual(values = c("#00AFBB", "#E7B800", "#

FC4E07"))+theme_linedraw()

The plot in Figure 1 shows the scatter plot of the
Raven_IQ versus SAI_winsorized_IQ scores. Each point
represents a participant, and as expected, the higher the
Raven_IQ score, the higher the SAI_winsorized_IQ. Nev-
ertheless, although the points follow a clustering trend,
their dispersion on the y-axis is very large, indicating that
for a specific Raven_IQ score, there are multiple values of
SAIQ; conversely, for different participants with the same
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Figure 2 Spread-Location Plot on the relationships between an objective measurement of human intelligence and a sub-
jective self-report of it, as functions of other two qualitative variables
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The Figure also shows a blue curve with grey shad-
ing corresponding to the standard errors for the LOESS
smoother fit, while the red straight line with red shading
corresponds to the standard errors for the linear fit. The
blue line is a LOESS smoothed line, and the red line is
a linear regression line. As long as the LOESS smoother
(blue line) roughly approximates the linear tendency (red
line), the assumption of linearity has been apparently met.
However, with a more careful, simple visual inspection, the
linearity hypothesis seems not to be fully satisfied. The
confidence bands are of short length (especially the confi-
dence red band for the linear model), and LOESS, the blue
line, shows local variations moving away from the red line,
which may indicate some non-linearity in the data, plus,
the square of the correlation coefficient r 2 = 0.078 is very
low. The supplementary material offers the reader other vi-
sualization syntaxes that depict problems of linearity.

Second Step: Homoscedasticity Assumption

This assumption can be checked by examining the Scale-
location plot, also known as the spread-location plot (see
Figure 2), another scatter plot that examines the variance
of the residuals versus the predicted values of the linear
model. Ideally, in the plot, we check the presence of a pat-
tern in the residuals, that will be consistent spread across
the range of predicted values, indicating that the variabil-
ity of the errors is consistent across all levels of the pre-

dictor. Conversely, if the blue line is flat and horizontal
with equally and randomly spread data points, there is ho-
moscedasticity. If the blue line has a positive or negative
slope or the data points are not randomly scattered, this
conveys the message of homoscedasticity violation. This
plot shows that residuals are not spread equally across pre-
dictor ranges as expected to confirm the Dunning-Kruger
Effect. In our example, this is not entirely the case; rigor-
ously, we need to proceed with the variance homogene-
ity assumption. A second alternative to evaluate the ho-
moscedasticity assumption is to use the absolute studen-
tized residuals (also available in the supplementary mate-
rial), which confirm the conclusions found with the spread-
location plot.

# Building the linear model of SAIQ versus Raven_IQ

lm.temp <- lm(SAI_winsorized_IQ~Raven_IQ, data=db)

# Extracting the residuals from the model results

db$resid <- resid(lm.temp)

# Extracting the predictions from the

# model results

db$fitted <- fitted(lm.temp)

# Extracting the standardized residuals from the

# model results

db$stdresid <- rstandard(lm.temp)

# Estimating the square root of the

# standardized residuals

db$rstandard <- sqrt(abs(db$stdresid ))

# Plotting the spread-location plot

ggplot(db, aes(x=fitted,y=rstandard)) +

stat_smooth(method="LOESS", alpha=.2) +

geom_point( aes(colour=study, shape=as.factor(sex)),

size=2.3) +
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Figure 3 Presence of group patterns in the scatterplot of standardized residuals and observation ID
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Standardized Residuals vs ID of observations

scale_color_manual(values = c("#00AFBB", "#E7B800", "#

FC4E07")) +

xlab("Fitted Value")+

ylab(expression(sqrt("|Standardized residuals|"))) +

ggtitle("Scale-Location")+ theme_linedraw()

Third Step: Testing the homoscedasticity assumption

To increase our certainty in the interpretation of the previ-
ous step, we can perform homoscedasticity tests. The func-
tion ncvTest() and bptest() return a numerical output
for the hypothesis of constant error variance against the
alternative that the error variance changes with the level
of the response (fitted values) or with a linear combina-
tion of predictors. On the one hand, the default bptest()
from the lmtest package (Zeileis & Hothorn, 2002) uses
the studentized Breusch-Pagan test proposed by Koenker
(1981). On the other hand, ncvTest() from the car pack-
age (Fox & Weisberg, 2019), performs the original version of
Breusch-Pagan test (Breusch & Pagan, 1979). The following
syntaxes yield these results:

# Breusch & Pagan test

# load libraries

library(lmtest)

# Breusch & Pagan test using the results of the

# linear fit

bptest(lm.temp)

##

## studentized Breusch-Pagan test

##

## data: lm.temp

## BP = 4.8922, df = 1, p-value = 0.02698

# Koenker version of Breusch & Pagan test

# Load libraries

library(car)

# Koenker version of Breusch & Pagan test using

# the linear fit

ncvTest(lm.temp)

## Non-constant Variance Score Test

## Variance formula: ~ fitted.values

## Chisquare = 4.942294, Df = 1, p = 0.026207

The results from both the Breusch-Pagan test (4.892; df
= 1; p = 0.026), and the non-constant variance test (χ2 =
4.942; df = 1; p = 0.026) led us to reject the hypothesis of
homoscedasticity of errors at a .05 alpha level.

Fourth Step: Checking the Independence Assumption

In ideal conditions, it is expected the absence of data pat-
terns when plotting standardized residuals against the in-
dex of observations. The presence of patterns conveys a
clear message about the lack of independence or some
uncontrolled endogeneity. After running the syntax be-
low, we obtain Figure 3 with clear data patterns. The red
dots make standardized residuals look a little more ho-
mogeneous than the other two samples, with fewer values
greater than 1 and a few more values lower than -2.

# plotting the scatter plot of standardized residuals

# and observation ID's

p2 <- ggplot(db, aes(x=ID, y=stdresid)) +

geom_point( aes(colour=study, shape=sex), size=2.3) +

scale_color_manual(values = c("#00AFBB", "#E7B800", "#

FC4E07")) +

theme_linedraw()

p2 + labs(x='Observation ID',
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y='Standardized Residuals',

title='Standardized Residuals vs ID of

observations')

\end{verbatim}

A Durbin-Watson (D-W) test allowed us to examine
whether the errors are autocorrelated with themselves. The
null hypothesis in this regard states that they are not auto-
correlated. In other words, at this moment, it is useful to
verify that we have not violated the independence assump-
tion (presence of lack-of-fit).

# Durbin-Watson using the linear fit

durbinWatsonTest(lm.temp)

## lag Autocorrelation D-W Statistic p-value

## 1 0.9278538 0.1342519 0

## Alternative hypothesis: rho != 0

The results of the D-W Statistic and its p-value suggest a
violation of the independence assumption. Thus, the data
analysis requires the inclusion of a third grouping variable,
in our case, ‘sex’ or s‘tudy variables’.

Fifth Step: GAMLSS specification and assumptions checks

In the GAMLSS approach, the fit of relationships based on
regression models does not have different assumptions be-
tween the response and the covariates than the linear mod-
els. We can use this property to find distributional evidence
of lack of fit. Based on normality assumptions on errors and
homoscedasticity, the linear model parametric fit based on
OLS and likelihood are equivalent because if the residu-
als errors showed a normal distribution the least squares
estimators should converge with the maximum likelihood
estimators (Kutner et al., 2003). Also, the hypotheses of
normality of residuals are useful for inferential purposes.
Therefore, we can fit the model proposed by Gignac and
Zajenkowski (2020) via GAMLSS using the family of nor-
mal distribution (NO). Thus, our following step requires a
regression-like GAMLSS specification and employs it as an
input in another chart.

# loading libraries

library(gamlss)

# Defining GAMLSS model

temp <- gamlss(SAI_winsorized_IQ ~ Raven_IQ, data=db,

family=NO, trace=FALSE)

temp

## Family: c("NO", "Normal")

## Fitting method: RS()

## Call: gamlss(formula = SAI_winsorized_IQ ~ Raven_IQ,

family = NO, data = db, trace = FALSE)

## Mu Coefficients:

## (Intercept) Raven_IQ

## 89.0364 0.3414

## Sigma Coefficients:

## (Intercept)

## 2.611

## Degrees of Freedom for the fit: 3 Residual Deg. of

Freedom 926

## Global Deviance: 7488.09

## AIC: 7494.09

## SBC: 7508.59

The residuals summary statistics from the resulting
model can be obtained using the summary command:

> summary(temp)

********************************************************

Family: c("NO", "Normal")

Call: gamlss(formula = SAI_winsorized_IQ ~ Raven_IQ,

family = NO, data = db, trace = FALSE)

Fitting method: RS()

--------------------------------------------------------

Mu link function: identity

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 89.03639 3.93286 22.639 <2e-16 ***

Raven_IQ 0.34144 0.03842 8.887 <2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1

` ' 1

--------------------------------------------------------

Sigma link function: log

Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.6113 0.0232 112.6 <2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1

` ' 1

--------------------------------------------------------

No. of observations in the fit: 929

Degrees of Freedom for the fit: 3

Residual Deg. of Freedom: 926

at cycle: 2

Global Deviance: 7488.088

AIC: 7494.088

SBC: 7508.59

********************************************************

This results showed that for the µ submodel the
Raven_IQ is a significant predictor of SAIQ, but not for the
σ submodel. As expected for the Dunning-Kruger Effect the
scores for the IQ test does not necessarily predict the self-
concept of intelligent scores. The result from the gamlss

command could be also used to evaluated normality, fol-
lowing the next commands.

# Plotting the distribution of data

plotSimpleGamlss(x= Raven_IQ,

y=SAI_winsorized_IQ,

model=temp, data=db, pch=1,

x.val=seq(65,160,6), val=200, N=500,

ylim=c(80, 170),

xlim=c(58, 135),
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Figure 4 Distribution of data in the Y axis at specific values of the data in the X axis. Note the shapes of the probability
density function plots are based on the Normal distribution. Also, note that both location and scale can change according
to X.
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cols=viridis_pal(begin = 0.3, end = 0.95,

alpha=0.4, option ="D",

direction=1)(100))

The previous syntax leads to Figure 4. A simple visual
inspection of this chart reveals that there is no strong ev-
idence of normality deviation. Nonetheless, some density
curves show different variability, which can be additional
evidence of non-constant dispersion (i.e., heteroscedastic-
ity) that is not so commonly checked in empirical psycho-
logical research.

Another way to visualize the normality assumption is
through a worm-plot, a detrended Q-Q plot in which the
deviation around the reference line can be seen better by
having more space on the y-axis. Figure 5 depicts a worm-
plot (Buuren & Fredriks, 2001) that identifies some char-
acteristics of the data that the fitted model does not ade-
quately capture.

The yellow dots indicate how far the residuals depart
from their expected null value. A high (low) variance pat-
tern is related to positive (negative) sloped dots. When
the dots are U-shaped (inverted U-shaped), there is evi-
dence of positive (negative) skewness. When the dots are
S-shaped with left bent up (down), there is evidence of
large (small) kurtosis (for more details as to the interpre-
tation of the worm plot, see Table 12.1 in Stasinopoulos et
al., 2017). Thus, when the model is correctly specified, all
or nearly all of the dots are expected to lie inside the two
dashed semicircles. A commonly used rule is to conclude
that the model is correctly specified when at least 95% of

the dots do so. Figure 5 shows a U-shape and several points
outside the confidence band, indicating that the hypothe-
sis of normality and constant variance is not fulfilled, and
at the same time, the wormplot U shape suggests a neg-
ative skew (Buuren & Fredriks, 2001), as was expected for
the Dunning-Kruger effect for which the left tail should
be longer, because the misestimation of cognitive ability
should be larger at the lower end of the spectrum (left tail)
(Gignac & Zajenkowski, 2020). In the supplementary mate-
rial, other checks are also available.

Sixth Step: Evidence of Heteroscedasticity

Using regressograms, a smoother version of the histogram,
we evaluate heteroscedasticity evidence by plotting the av-
erage of all points that fall into disjoint bins. We propose
constructing piecewise functions in the intervals {Bk :=
[tk , tk+1) : tk = t0 + hk,k ∈ Z } (uniform breaks) or {Bk :=
[tk , tk+1) : tk−empiric quantile,k ∈ Z } (quantile breaks) and
calculate for y (output) a robust coefficient of variation
based on the MAD across the midpoints of x (input) in Bk .
This estimator, proposed by Ospina and Marmolejo-Ramos
(2019), is defined as follows,

CVMAD = θ̂MAD = MAD

Mdn
(1)

where MAD is defined as,

MAD = 1.4826 ·Mdn{|x −Q̂2|}, (2)

and in Eq. (1) Mdn = Q̂2 = Q̂(0.5) = Fn(0.5)−1 is an esti-
mator of location that is robust as it has a high breakdown
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Figure 5 Worm-plot of the residuals of the gamlss model. Data were modelled with the Normal distribution.
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breakdown value is the smallest fraction of contamination
that can cause the estimator to take on values far from its
value on the uncontaminated data. Here, we choose the
bandwidth h by the Sturges rule (Sturges, 1926) for his-
tograms and we chose the percentiles for quantile breaks.
The syntaxes included in Appendix facilitate the explo-
ration of heteroscedasticity as defined above.

Figure 6 depicts the resulting regressogram plots in
terms of the behaviour of the covariates against the re-
sponse and in terms of the fitted values against the resid-
uals. Regardless of how the breaks are constructed, the
CVMAD is not constant, giving further evidence of het-
eroscedasticity.

Final Validation

Finally, we can use a global test of model assumptions us-
ing the gvlma package in R (Pena & Slate, 2019). The pack-
age allows the user to check out (almost) all the ideas dis-
cussed so far. This package relies on the methodology pro-
posed by Peña and Slate (2006). Appendix 2 at the end of
this manuscript provides the syntaxes for this purpose.

Discussion

This article provided a GAMLSS-based tutorial for the
analysis of potential heteroscedasticity in psychological
data. As mentioned earlier, we revisited the data provided
by Gignac and Zajenkowski (2020) about the Dunning-

Kruger effect, a phenomenon where heteroscedasticity is
expected. However, Gignac and Zajenkowski (2020) re-
ported that the Glejser test did not yield significant val-
ues, suggesting that their data were homoscedastic, con-
tradicting the original hypothesis. Here we presented four
different methods to reevaluate the heteroscedasticity hy-
pothesis of the Gignac and Zajenkowski (2020) data, and
our results revealed inconclusive evidence of heteroscedas-
ticity as two statistical tests suggested its presence (i.e.,
Non-constant variance test and Breusch-Pagan test) while
the other two tests did not (i.e., Glejser and the ‘gvlma’
tests). Our finding clearly extended the scrutiny of Gignac
and Zajenkowski (2020) and illustrated that its examination
should not be based on one test only. Substantive knowl-
edge of the data-generating process, along with an ample
gamut of statistical techniques, are, in our view, the best
set of tools for analyzing psychological data with poten-
tial heteroscedasticity. Such an approach is in line with the
multiverse analysis previously introduced by Steegen et al.
(2016).

Although our approach has not found an unequiv-
ocal answer about the distribution of the Gignac and
Zajenkowski (2020) data and the presence of the het-
eroscedasticity, we identify a set of specific characteristics
of the distribution data that fit with the Dunning-Kruger ef-
fect. We found issues with the distribution of the residuals
in that these were not equally spread along the predictor
ranges, and the fact that the scores for the IQ test were not
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Figure 6 Regressograms with several uniform breaks (upper) and quantile breaks (bottom).
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good predictors of the self-concept of intelligence scores
for the gamlss σ submodel. These characteristics suggest
that the data from Gignac and Zajenkowski (2020) could be
used to support the Dunning-Kruger effect, demonstrating
that the degree to which people mispredicted their mea-
sured intelligence is not equal for all levels of intelligence.

This reinterpretation of the Gignac and Zajenkowski
(2020) data was made possible through the use of GAMLSS,
and even though the use of the gamlss R package is not
entirely novel in psychology, its employment has rarely
gone beyond the disciplinary borders of psychometrics and
methodological research (Timmerman et al., 2021; Von-
cken et al., 2019b, 2019a; Dinga et al., 2021; Coupé, 2018;
Campitelli et al., 2017). This tutorial aimed to promote the
use of the gamlss package for applied researchers working
on different psychology areas (e.g., consumer psychology,
industrial and organizational psychology, clinical psychol-
ogy).

One aspect that is particularly relevant to enable more
widespread usage of GAMLSS in psychology and beyond is
the development of tools supporting the interpretation of
the fitted models by the data analyst. In addition to appro-
priate summary statistics, graphical tools are particularly
relevant for this purpose. Effect displays, scenario analyses
(see for more details in Kneib et al., 2021) and bucketplots
(de Bastiani et al., 2022) are potential ways of enabling a
better understanding of how certain explanatory variables
impact the fit of a model, and their construction can be fa-
cilitated by corresponding statistical software (see for ex-
ample, Stadlmann and Kneib, 2021).
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Appendix 1: Exploring heteroscedasticity in the data

The following syntaxes are helpful to explore the heteroscedasticity in the data.

## mad/median estimation

madmedian <- function(x){

mdn <- median(x)

MAD <- 1.4826 * median(abs(x - mdn))

MAD/mdn

}

# classic coefficient of variation

oldcv <- function(x) sd(x)/mean(x)

# Defining a new function to estimate the regression mad/median

regres.madmedian <- function(x,y, x.lab="X",y.lab="Y",main="TITLE"){

xy <- data.frame(x=x,y=y)

xy <- xy[order(xy$x),]

nbins <- nclass.Sturges(y)

temp <- mean(y)

z <- cut(xy$x,breaks=seq(min(xy$x),max(xy$x),length=nbins+1),

labels=1:nbins,include.lowest=TRUE)

xyz <- data.frame(xy,z=z)

MEANS <- c(by(xyz$y,xyz$z,FUN=madmedian))

x.seq <- seq(min(x), max(x), length = nbins + 1)

midpts <- (x.seq[-1] + x.seq[-(nbins + 1)])/2

d2 <- data.frame(midpts = midpts, MEANS = MEANS)

p <- ggplot(xyz, aes(x, y)) + geom_point() + ggtitle(main) +

xlab(x.lab) + ylab(y.lab) + theme(text = element_text(size = 20))
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p <- p + geom_vline(xintercept = x.seq[-c(1, nbins +

1)], linetype = "dashed", color = "blue")+theme_linedraw()

p2 <- ggplot()+ geom_point(data = d2, aes(x = midpts, y = MEANS),

color = "red", shape = 18, size = 3)+geom_vline(xintercept = x.seq[-c

(1, nbins +

1)], linetype = "dashed", color = "blue")

p2 <- p2 + geom_line(data = d2, aes(x = midpts, y = MEANS),

color = "red", linetype = "dashed") +

xlab("midpoints") +

ylab("Mad/median coef.") +

theme(text = element_text(size = 20)) +

theme_linedraw()

output <- plot_grid(p, p2, ncol=1)

output

}

# regression mad/median estimation for the Raven IQ and the SAI scores

regres.madmedian(x = db$Raven_IQ,

y = db$SAI_winsorized_IQ,

x.lab = "Raven_IQ",

y.lab = "SAI_winsorized_IQ",

main = "Regressogram MadMedian - - Uniform breaks")

# regression mad/median estimation for fitted values and residuals

regres.madmedian(x = db$fitted,

y = db$resid,

x.lab = "fitted",

y.lab = "Residuals",

main = "Regressogram MadMedian - Uniform breaks")

# Defining a new function to estimate R-square for the regression mad/median

regresquan.madmedian <- function(x,y, x.lab="X",y.lab="Y",main="TITLE"){

xy <- data.frame(x=x,y=y)

xy <- xy[order(xy$x),]

brks <- as.numeric(with(xy, quantile(x, probs = seq(0,1, .1))))

nbins <- length(brks) # nclass.Sturges(y)

temp <- mean(y)

z <- cut(xy$x,breaks= brks,

# seq(min(xy$x),max(xy$x),length=nbins+1),

labels=1:(nbins-1),include.lowest=TRUE)

xyz <- data.frame(xy,z=z)

MEANS <- c(by(xyz$y,xyz$z,FUN=madmedian))

x.seq <- seq(min(x), max(x), length = nbins)

midpts <- (x.seq[-1] + x.seq[-(nbins)])/2

d2 <- data.frame(midpts = midpts, MEANS = MEANS)

p <- ggplot(xyz, aes(x, y)) + geom_point() + ggtitle(main) +

xlab(x.lab) + ylab(y.lab) + theme(text = element_text(size = 20))
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p <- p + geom_vline(xintercept = x.seq[-c(1, nbins)],

linetype = "dashed", color = "blue")+theme_linedraw()

p2 <- ggplot()+ geom_point(data = d2, aes(x = midpts, y = MEANS),

color = "red", shape = 18, size = 3) +

geom_vline(xintercept = x.seq[-c(1, nbins )],

linetype = "dashed", color = "blue")

p2 <- p2 + geom_line(data = d2, aes(x = midpts, y = MEANS),

color = "red", linetype = "dashed") +

xlab("midpoints") +

ylab("Mad/median coef.") +

theme(text = element_text(size = 20)) +

theme_linedraw()

output <- plot_grid(p, p2, ncol=1)

output

}

# Estimating the R-square of regression mad/median estimation for the Raven IQ and the SAI

scores

regresquan.madmedian(x = db$Raven_IQ,

y = db$SAI_winsorized_IQ,

x.lab = "Raven_IQ",

y.lab = "SAI_winsorized_IQ",

main = "Regressogram MadMedian - Quantile breaks")

# Estimating the R-square for fitted vales and residuals

regresquan.madmedian(x = db$fitted,

y = db$resid,

x.lab = "fitted",

y.lab = "Residuals",

main = "Regressogram MadMedian - Quantile breaks")

Appendix 2: Final Validation

The following syntaxes are helpful to conduct the final validation of results

library(gvlma)

gvmodel.gobble <- gvlma(lm.temp)

summary(gvmodel.gobble)

##

## Call:

## lm(formula = SAI_winsorized_IQ ~ Raven_IQ, data = db)

##

## Residuals:

## Min 1Q Median 3Q Max

## -46.605 -9.214 -0.984 9.134 48.734

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 89.03639 3.93709 22.615 <2e-16 ***

## Raven_IQ 0.34144 0.03846 8.878 <2e-16 ***
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## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 13.63 on 927 degrees of freedom

## Multiple R-squared: 0.07836, Adjusted R-squared: 0.07736

## F-statistic: 78.81 on 1 and 927 DF, p-value: < 2.2e-16

##

##

## ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS

## USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:

## Level of Significance = 0.05

##

## Call:

## gvlma(x = lm.temp)

##

## Value p-value Decision

## Global Stat 6.24190 0.18180 Assumptions acceptable.

## Skewness 5.28391 0.02152 Assumptions NOT satisfied!

## Kurtosis 0.01622 0.89867 Assumptions acceptable.

## Link Function 0.36737 0.54444 Assumptions acceptable.

## Heteroscedasticity 0.57441 0.44851 Assumptions acceptable.
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