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Abstract Missing data in longitudinal randomized clinical trials, even if assumed to be missing at
random (MAR), can result in biased parameter estimates and incorrect treatment conclusions. If
missing data are suspected to be missing not at random (MNAR, i.e., missing data due to the un-
observed values themselves), accepted missing data handling techniques are inadequate and the
problem is compounded due to the introduction of additional bias. The goal of this paper is to
provide trialists the analytic tools and methodological steps needed to assess treatment effect verac-
ity if MNAR is suspected, enabling researchers to reach reasonable and defensible treatment effect
conclusions. The explanations, steps, and conclusions are demonstrated using trial data involving
binge drinking behavior among college students. All analysis model diagrams are presented, and
both linear model equations and Mplus syntax scripts for all analyses are included in a supplemen-
tal Appendix to further provide trialists the methodological tools needed to further test treatment
effect estimates when MNAR is suspected.
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“Missing values represent a potential source of bias in
a clinical trial. . . In reality, however, there will almost
always be some missing data. . . A trial may be re-
garded as valid, none the less, provided the methods
of dealing with missing values are sensible,. . . ” (ICH
E9 Working Group, 1999, section 5.3, cited in Carpen-
ter & Kenward, 2007, italics added for emphasis).

Introduction

No matter how tightly controlled the data collection por-
tion of a longitudinal clinical trial may be, different
amounts and patterns of missing data are commonly
viewed as inevitable (Gomer & Yuan, 2021). In addition
to valuable treatment efficacy and effectiveness informa-
tion being lost, missing longitudinal trial data is addition-
ally problematic due to the possibilities of missing data:
1) biasing parameter and standard error estimates, 2) bi-
asing treatment effect size estimates, and 3) leading trial-
ists to incorrect conclusions regarding treatment efficacy
and effectiveness (Cro et al., 2020; Gerber & Green, 2012;
Gomer & Yuan, 2021; Zhou & Fishbach, 2016). Missing

data generated by a random process that is independent
of any (a) past, present, or future (b) observed or unob-
served (c) predictor, covariate, or response variable value
defines a missing completely at random (MCAR) missing
data mechanism (e.g., Demirtas & Schafer, 2003; Enders,
2010, 2011b; Post et al., 2010; Rubin, 1976). MCAR mecha-
nisms are often viewed as unlikely and unrealistic explana-
tions for longitudinal trial missing data (Mallinckrodt et al.,
2014; Raykov, 2011). A missing at random (MAR) explana-
tory mechanism for missing data assumes that missing re-
sponse variable data are independent of unobserved re-
sponse variable values, but are related to response variable
data collected at a previous or later time point, or to one
or more observed predictor or covariate variables included
in the data analysis model (Demirtas & Schafer, 2003; En-
ders, 2011b; Hedeker & Gibbons, 1997; Post et al., 2010;
Raykov, 2011). A MAR mechanism further assumes that the
response variable distributions for participants who do and
do not drop out of a randomized trial are identical (Carpen-
ter & Kenward, 2007). A MAR mechanism in a longitudi-
nal trial design may be a logical assumption, but unfortu-
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nately is one that cannot be confirmed (Mallinckrodt et al.,
2014). Missing longitudinal trial data assumed to be either
MCAR or MAR is often termed ignorable missing data be-
cause it can be handled with minimal parameter estimate
bias by maximum likelihood (ML) estimation, multiple im-
putation (MI), inverse probability weighting (IPW), or dou-
ble sampling and bounds techniques (e.g., Coppock et al.,
2017; Enders, 2010, 2022; Gomila & Clark, 2022; Graham,
2012; Heitjan & Rubin, 1991). However, each of these tech-
niques also rely on untestable assumptions regarding the
missing data distribution (Cro et al., 2020; Enders, 2011b,
2011a, 2022).

Missing not at random (MNAR) has been defined as
non-ignorable dropout (Demirtas & Schafer, 2003) that is
conditional on the unobserved response variable values
(Carpenter & Kenward, 2007; Mallinckrodt et al., 2014; Ru-
bin, 1976). In other words, MNAR missing response vari-
able data is assumed to be a direct result of the response
variable values that should have been observed but were
not. Examples of suspected MNAR in the published liter-
ature include: 1) missing data in an investigation of lead
exposure in children due to the child being hospitalized
for lead toxicity (Roberts & English, 2016), 2) missing data
in a study of routine child clinical care due to participants
leaving the study to seek care elsewhere due to care qual-
ity dissatisfaction (Gachau et al., 2020), 3) missing depres-
sion data due to depression symptom severity resulting in
study dropout (Shrive et al., 2006), 4) missing data in a chil-
dren’s alcohol abuse study due to leaving the study for fear
of alcohol abuse detection (Sharmin et al., 2019), 5) miss-
ing weight data in a study of pediatric bariatric weight loss
surgical patients due to dropping out before their weight
regain is detected (Dewberry et al., 2020), and 6) missing
data in a pediatric cancer treatment trial due to mortality
(e.g., Bernhard et al., 1998). In contrast to missing data
assumed to be MCAR or MAR, suspected MNAR data can-
not be handled appropriately by any of the previously men-
tioned techniques.

The purpose of this paper is to provide a step-by-step
tutorial for implementing a series of sensitivity analyses to
address missing longitudinal trial data that is suspected to
be MNAR (e.g., Beunckens et al., 2008; Demirtas & Schafer,
2003; Enders, 2010, 2011b, 2011a; Gottfredson et al., 2014;
Graham, 2012; Hedeker & Gibbons, 1997; Jung et al., 2011;
Little, 1995; Molenberghs et al., 2008; Muthén et al., 2011;
Muthén & Brown, 2009; Roy, 2003, 2007; Sterba & Got-
tfredson, 2015; Yuan & Little, 2009). As an aside, sus-
pected MNAR data is not limited to either longitudinal de-
signs or to randomized trials. For example, MNAR could be
suspected in an observational newlywed marital satisfac-
tion study due to divorce (DiLillo et al., 2009). This paper
proceeds from the assumption that although all missing

data handling techniques rely on untestable assumptions
to varying degrees, reasonable answers to longitudinal trial
research questions can be obtained even under suspected
MNAR (Carpenter & Kenward, 2007). Specifically, a series
of sensitivity analysis models, each making different miss-
ing data assumptions, will be specified and analyzed using
a longitudinal trial dataset that tested treatment interven-
tions designed to reduce college student binge drinking.
All linear model equations and Mplus data analysis syntax
scripts for all example analyses are available in a supple-
mental Appendix.

Description of the Murphy et al. (2019) Longitudinal Trial
and Dataset

Murphy et al. (2019) examined the effects of a brief mo-
tivational interview (brief MI) intervention on problem-
atic binge drinking behavior in a sample of 393 first- and
second-year undergraduate college students. A brief MI
was used to both illuminate a participant’s drinking be-
haviors and clarify the risks posed to college students’ ca-
reer aspirations. The brief MI intervention was supple-
mented with a behavioral economic aspect that was geared
toward counteracting “delay discounting”, defined as the
tendency to see the immediate personal and social ben-
efits of drinking behavior as more valuable than the de-
layed rewards of salary and status associated with career at-
tainment years later. Participants were randomly assigned
to the following independent variable conditions: 1) an
assessment control condition, 2) brief MI plus relaxation
training (RT; i.e., diaphragm breathing, muscle relaxation)
and stress management, or 3) brief MI plus substance-free
activity sessions (SFAS) designed to replace drinking be-
haviors with those that are more conducive to long-term
goal attainment. Participants were assessed at baseline,
and at 1-, 6-, 12-, and 16-month follow ups. Data from
baseline, 1-, 6-, and 12-month follow ups are considered
here. Although the original Murphy et al. study investi-
gated the effects of RT and SFAS on Daily Drinking Ques-
tionnaire (DDQ) and Young Adult Alcohol Consequences
Questionnaire (YAACQ) scores, the response variable of in-
terest here is a secondary continuous outcome measure of
binge drinking (BINGE) behavior. The specific treatment
effect secondary research question of interest is whether RT
and SFAS significantly reduce binge drinking behavior ver-
sus an assessment control. MNAR could reasonably be sus-
pected in the BINGE drinking trial because dropout miss-
ing data may be due to the consequences of binge drink-
ing (Gomer & Yuan, 2021), such as physical symptoms (e.g.,
hangovers) or hospitalization, academic suspension or ex-
pulsion, or arrest and incarceration.
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Missing Data Theory

A fundamental tenet of missing data theory states that if
missing response variable data are related to one or more
observed analysis variables, there is no relationship be-
tween observed response variable data and missing re-
sponse variable data. This is the definition of conditional
independence, which is implicitly invoked when missing
data is assumed to be MAR. If the MAR assumption of con-
ditional independence is true, only a data analytic model
for the observed variables is needed to handle missing data.

However, if MNAR is suspected, two methodological
difficulties immediately arise: 1) the joint distribution of
both the observed response variable and missing response
variable data quantifying the relationship between the two
cannot be known with certainty (Enders, 2011b, 2011a),
and 2) MNAR models that propose different possible joint
distributional relationships rely heavily on assumptions
that cannot be tested. Conditional independence is of-
ten invoked as an assumption in MNAR scenarios to sug-
gest that the observed data and the missing data are un-
related assuming certain specific, but untestable, MNAR
model specifications and assumptions have been met. A
theme that runs throughout this paper, where applicable,
is how conditional independence, if assumed, is specified
across a variety of different MNAR analysis models. Over-
all, if MNAR is suspected, then addressing MNAR while
simultaneously answering the research question at hand
requires specifying the relationship between the observed
data analysis model and missing data model (Rubin, 1976).
The missing data indicator variables needed to add a miss-
ing data model to the longitudinal trial data analysis model
are described next.

Coding Missing Data Indicator Variables

Handling suspected MNAR data begins with identifying the
number of separate missing data patterns contained in the
sample data and creating different types of missing data in-
dicator variables based on the observed patterns (Mplus
will output missing data patterns if the command ‘OUT-
PUT: patterns;’ is added to the input syntax; see supple-
mental Appendix A, p. 1). The eight missing data patterns
observed in the BINGE dataset are shown in the first col-
umn (Pattern) of Table 1 followed by BINGE data exam-
ples for each pattern in the next four columns (BINGE_B-
BINGE_12). Missing data in longitudinal trials are classified
as one of two types: dropout or intermittent. Dropout can
occur only after an observed baseline assessment and is de-
fined as any participant who fails to complete the study.
Patterns 2 (n = 26, 6.6%), 4 (n = 13, 3.3%), 6 (n = 2, 0.5%),
and 8 (n = 9, 2.3%) are examples of dropout missing data.
Intermittent missing data is defined as any participant who

completes the study but has missing data for one or more
intervening assessment time points. Patterns 3 (n = 21,
5.3%), 5 (n = 10, 2.5%), and 7 (n = 6, 1.5%) are examples of
intermittent missing data. Pattern 1 shows complete data
representing participants with no missing data for any as-
sessment time point (n = 306, 77.9%).

Table 1 also shows the first two types of binary miss-
ing data indicators, dummy dropout indicators (d1 – d3;
columns 7-9) and survival dropout indicators (s1 – s3;
columns 10-12). Dummy indicators assign a value of 1 for
post-baseline dropout, 0 otherwise; survival indicators as-
sign 0 for observed data, 1 for post-baseline dropout, and
-99 (missing data indicator value) for all post-dropout as-
sessments. Notice both dummy and survival indicators
treat intermittent missing data (e.g., not dropout missing
data) essentially the same as observed data by invoking
a MAR assumption (Enders, 2011b, 2011a; Muthén et al.,
2011) and assigning values of 0 for patterns 3, 5, and 7.
Notice also that both dummy and survival indicators as-
sign a value of 1 for the time point at which dropout oc-
curred. The two sets of indicators differ only in their re-
spective post-dropout codes as shown in patterns 4 and 8:
dummy indicators assign post-dropout codes a value of 0
(as will be shown in the pattern mixture model example,
dummy dropout indicators will serve as predictors of miss-
ing data, so complete data for these indicators is needed
to avoid listwise deletion); survival indicators assign post-
dropout codes a missing value indicator (-99). Consis-
tent with discrete-time survival analysis, survival indica-
tors treat dropout as an “at risk” event and assign a post-
dropout missing value indicator (-99). This effectively re-
moves participants who have dropped out from the “risk
set” that contains participants who have not dropped out,
but still could later.

In contrast to dummy and survival dropout indicators,
multinomial missing data indicators (m1 – m3 in Table 1)
assign observed data a value of 0 (reference class), inter-
mittent missing data a value of 1 (assuming possible MAR),
and dropout missing data a value of 2 (assuming possi-
ble MNAR; Albert et al., 2002; see also Lin et al., 2004). A
comparison of predictions of intermittent (suggesting pos-
sible MAR) and dropout missing data (suggesting possi-
ble MNAR) can be performed using both survival (s1-s3)
and multinomial (m1-m3) missing data codes in the miss-
ing data model. Finally, two additional single value miss-
ing data indicators are shown in the last two columns of
Table 1: ‘Droptime’ (Roy, 2003, 2007; Yuan & Little, 2009)
and ‘Summary’ (Gottfredson et al., 2014; Rose et al., 2010).
Both have the same values for complete data (4, see pat-
tern 1) and dropout patterns 2, 4, and 8. ‘Droptime’ codes
the last assessment timepoint at which response data was
observed; ‘Summary’ is a count of the number of observed
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Table 1 Missing Data Codings for MNAR Models

Pattern BINGE_B BINGE_1 BINGE_6 BINGE_12 n d1 d2 d3 s1 s2 s3 m1 m2 m3 Droptime Summary
1 5 20 2 1 306 0 0 0 0 0 0 0 0 0 4 4
2 4 0 1 -99 26 0 0 1 0 0 1 0 0 2 3 3
3 4 3 -99 2 21 0 0 0 0 0 0 0 1 0 4 3
4 8 8 -99 -99 13 0 1 0 0 1 -99 0 2 2 2 2
5 1 -99 0 2 10 0 0 0 0 0 0 1 0 0 4 3
6 10 -99 13 -99 2 0 0 1 0 0 1 1 0 2 3 2
7 6 -99 -99 3 6 0 0 0 0 0 0 1 1 0 4 2
8 16 -99 -99 -99 9 1 0 0 1 -99 -99 2 2 2 1 1

Note. BINGE refers to response variable values collected at baseline (_B), 1-month (_1), 6-month (_6) and 12-month (_12)
follow-ups, d1 - d3 are dummy missing data codes; s1 - s3 are survival missing data codes, m1 - m3 are multinomial miss-
ing data codes, -99 is a missing data indicator value. For d1-d3 and s1-s3, 0 = observed data, 1 = missing data. For m1 - m3,
0 = observed data, 1 = intermittent missing data, 2 = dropout missing data. Droptime indicates the assessment time point
at which dropout occurred. Summary is a count of the number of observed response variable scores.

data points. First is a description of MNAR model types and
diagnostic statistics, then each of these missing data indi-
cator variables will be used in the MNAR sensitivity analy-
ses that follow.

MNAR Models and Diagnostics

The two general types of MNAR models can be differenti-
ated based on how the added missing data model is speci-
fied (e.g., Little, 1995). Pattern mixture models add dummy
missing data codes (Table 1, columns 7-9) to the analysis
model as additional predictors assuming that observed re-
sponse variable data is conditional on missing data. Se-
lection (and shared parameter) models add survival and
multinomial missing data codes (Table 1, columns 10-
15) as additional response variables assuming that miss-
ing response variable data is conditional on observed data.
Both pattern mixture and selection (and shared parame-
ter) models offer very different plausible assumptions for
why response variable data are missing, but those assump-
tions cannot be tested or proven definitively. Research (e.g.,
Gomer & Yuan, 2021) shows that, among other possibilities
(discussed below), MNAR can also be suspected in a lon-
gitudinal design due to one or more trajectory random ef-
fects (shared parameter models; Wu & Carroll, 1988; e.g.,
Yang & Maxwell, 2014; Yang, et al., 2015, as cited in Gomer
& Yuan, 2021). Readers interested in the mathematical for-
mulations and definitions of how pattern mixture models
and selection models factorize the joint distributional rela-
tionship between observed data and missing data can con-
sult several available sources (e.g., see Enders, 2010, pp.
290-291; 2022, pp. 348-351; Gomer & Yuan, 2021, p. 562;
Little & Rubin, 2002; pp. 351-355; Muthén et al., 2011, p.
18).

Gomer and Yuan (2021; see also Enders, 2022, pp. 349-
353) further distinguish between suspected focal MNAR
and diffuse MNAR scenarios. Focal MNAR is defined as

missing response variable data being wholly conditional on
the unobserved values themselves and not on any other
observed variable. Previously mentioned published stud-
ies investigating severe depression, substance abuse treat-
ment, and marital satisfaction are examples of suspected
focal MNAR where missing response variable values are
completely due to the unobserved values themselves. In
contrast, diffuse MNAR is defined as missing response vari-
able values being dependent upon unobserved values even
after conditioning on observed response variable or predic-
tor variable values. For example, returning to the BINGE
drinking study, if fraternity or sorority membership was
known to increase the likelihood of BINGE drinking, miss-
ing BINGE drinking data would still be dependent on the
unobserved values even after controlling for college Greek
society participation. Pattern mixture, shared parameter,
and selection models will be specified to address both focal
and diffuse MNAR where applicable.

Further, as noted previously, there are two ways in
which suspected MNAR can arise: missing response vari-
able data can be dependent upon the missing values them-
selves or can depend on one or more random trajectory
effects from a longitudinal growth model. A third way
that a MNAR process could arise is by excluding one or
more relevant auxiliary variables (Graham, 2003) from the
analysis model needed to answer the research question.
Briefly, effective auxiliary variables are defined as: 1) not
needed to answer the research question but are both re-
lated to missing response variable values and available for
analysis model inclusion, 2) showing a response variable
mean difference effect size of d > 0.20 when comparing
dummy-coded observed data and missing data groups, and
3) are correlated with data analysis model response vari-
able residual variances at r > 0.30 (see e.g., Enders, 2022,
pp. 21-23). BINGE dataset variables such as gender, age,
Greek fraternity or sorority membership, parent income,

TheQuantitativeMethods forPsychology 3502

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.19.4.p347


¦ 2023 Vol. 19 no. 4

Table 2 Estimates for Traditional MNAR Models

Pattern Mixture Shared Parameter
MAR Focal Diffuse MAR Diffuse DiffuseIV Multinomial

RT� Intercept -1.77 (0.47)** -1.78 (0.47)** -1.82 (0.49)** -1.77 (0.47)** -1.74 (0.47)** -1.76 (0.47)** -1.80 (0.46)**
SFAS� Slope -1.24 (0.51)* -1.24 (0.51)* -1.31 (0.52)* -1.24 (0.51)* -1.25 (0.51)* -1.25 (0.50)* -1.25 (0.42)**

Estimated
Parameters

14 16 20 19 19 21 23

LogL -3820.60 -3820.27 -3823.47 -4018.52 -4019.36 -4018.25 -4220.59
AIC 7669.19 7672.55 7686.94 8075.05 8076.72 8078.49 8487.18
BIC 7724.82 7736.13 7766.41 8150.55 8152.22 8161.94 8578.58
∆AIC -3.35 -17.75 -1.68 -3.45 NA
∆BIC -11.30 -41.59 -1.68 -11.40 NA

Note. ** : p < .01; * : p < .05; NA = not applicable

participant income, family history of problematic drinking,
grade point average, marijuana use, depression, anxiety, al-
cohol consequences, self-regulation, protective behaviors,
and delay discounting were tested, but none of the addi-
tional variables collected in the BINGE drinking trial met
criteria for auxiliary inclusion, so the possibility of a MNAR
by omission (Collins et al., 2001) scenario will be discussed
later.

Importantly, it is well-known in the missing data lit-
erature that there is no definitive test of whether MAR or
MNAR is more plausible in a sample of data (e.g., Little
& Rubin, 2002). However, it has been shown how tradi-
tional MNAR models can be re-specified as models that as-

sume MAR (e.g., Molenberghs et al., 2008), and compar-
isons can be made between a MNAR model and a prop-
erly respecified and comparable MAR model (Molenberghs
et al., 1997, 2008; Molenberghs & Kenward, 2007; Verbeke
et al., 2001; Verbeke & Molenberghs, 2000; Verbeke et al.,
2008). Although traditional model comparison techniques
such as likelihood ratio nested model tests cannot be used
(e.g., Molenberghs & Kenward, 2007), Kuha (2004) and oth-
ers have recommended relative model fit comparisons us-
ing AIC and BIC values. Sterba and Gottfredson (2015, p.
297) have advocated for the use of AIC and BIC difference
statistics (∆AIC & ∆BIC) between MNAR models and their
respective appropriate MAR counterparts:

∆AIC =−2
(
Log LM AR −Log LM N AR

)+2(PM AR −PM N AR ) (1)

∆BIC =−2
(
Log LM AR −Log LM N AR

)+ (l n [N ])∗ (PM AR −PM N AR ) , (2)

where Log L represents the model log-likelihood value
and P represents the number of parameters estimated.
Negative ∆AIC and ∆BIC values suggest support for the
MAR model, positive values suggest support for the MNAR
model. However, ∆AIC and ∆BIC values can be biased

based on participants that show aberrant or extreme re-
sponse variable values (e.g., Kenward, 1998). Sterba and
Pek (2012) provide computations for individual ∆AIC and
∆BIC influence values as follows:

∆AIC I N F
i =−2

(
ln

[
Log LM AR

i −Log LM N AR
i

])
(3)

∆B IC I N F
i =−2

(
ln

[
Log LM AR

i −Log LM N AR
i

])+ (PM AR −PM N AR ) ln (N /N −1) . (4)
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Table 3 Estimates for Traditional MNAR Models (contd.)

Hybrid Selection
Diffuse Focal Diffuse (Lag) Diffuse (IV) Diffuse (Lag & IV) Multinomial

RT� Intercept -1.80 (0.46)** -1.78 (0.47)** -1.78 (0.47)** -1.77 (0.47)** -1.78 (0.47)** -1.75 (0.47)**
SFAS� Slope -1.22 (0.46)** -1.25 (0.51)* -1.26 (0.51)* -1.25 (0.51)* -1.26 (0.51)* -1.29 (0.46)*

Estimated
Parameters

23 18 19 20 21 20

LogL -3823.51 -4019.78 -4019.43 -4018.86 -4018.59 -4264.22
AIC 7693.02 8075.56 8076.87 8077.72 8079.19 8568.44
BIC 7784.42 8147.08 8152.37 8157.19 8162.64 8647.92
∆AIC NA -2.48 -2.88 -2.67 -3.29 NA
∆BIC NA -6.45 -6.86 -6.65 -7.26 NA

Note. ** : p < .01; * : p < .05; NA = not applicable

An individual case is considered influential if ∆AIC I N F
i >

∆AIC or ∆B IC I N F
i > ∆B IC . If either condition is ob-

served, excluding the influential case will change the mag-
nitude, sign, and interpretation of the ∆AIC or ∆B IC val-
ues (Sterba & Gottfredson, 2015). Although none of these
values can definitively diagnose MAR or MNAR at the sam-
ple or individual levels, model comparisons and individual
influence values can contribute useful information to an
extensive MNAR sensitivity analysis (Enders, 2022; Molen-
berghs & Verbeke, 2001; Rubin, 1977; Sterba & Gottfredson,
2015). Individual influence diagnostics were computed for
all eight traditional MNAR models shown in Tables 2 and 3,
but none of the values exceeded the ∆AIC or ∆B IC values
for any given model.

In the examples that follow, twelve traditional and eight
trajectory mixture MNAR models will be presented not only
to describe their different model assumptions and specifi-
cations, but also to underscore an important point: an ex-
tensive MNAR sensitivity analysis is necessary and should
never be performed either on an arbitrarily selected sin-
gle MNAR model or an arbitrarily selected subset of MNAR
modeling possibilities. However, and somewhat counter-
intuitively, investigating a MNAR suspicion begins with es-
timating a model that assumes MAR.

MAR Model

A longitudinal structural equation model (SEM), by default
in most statistical analysis software packages, will assume
all missing data to be missing at random (MAR). For the
Murphy et al. (2019) study data, MAR assumes that ob-
served BINGE scores at an earlier time point, random as-
signment, or both are related to missing BINGE data at
a later assessment timepoint. Preliminary unconditional
longitudinal model analyses of the BINGE data conducted
for this tutorial showed significant fixed effects for the in-
tercept (α0 = 5.61; p < .001), linear slope (α1 = −6.60; p <
.001), and quadratic change (α2 = 5.47; p < .001), and sig-

nificant random effects for the intercept (VAR[ζ0i ] = Ψ00 =
11.08; p < .001) and linear slope (VAR[ζ1i ] = Ψ11 = 4.30;
p < .05) best modeled average BINGE drinking behavior
changes over time. Note that the quadratic random effect
was non-significant, meaning the variation in non-linear
changes in BINGE drinking across participants over time
was not significantly different from zero. The quadratic
random effect (i.e., quadratic variance) was fixed to zero in
all analyses;Ψ22 = 0.

The conditional longitudinal MAR analysis model that
included RT and SFAS as predictors of intercept and linear
slope variance for the BINGE trial data is shown in Figure 1
(see supplemental appendix A, p. 1 for linear model Equa-
tions 1-4 and the relevant Mplus input syntax). Conditional
longitudinal model analysis results showed that RT par-
ticipants had significantly lower BINGE scores at baseline
(γ01 = −1.77; p < .001) and SFAS participants showed sig-
nificantly lower BINGE scores over time (γ12 = −1.24; p <
.05; see Table 2). If the missing response variable data at a
given assessment time point can be explained by observed
response variable data at a previous time point, random-
ization, or both consistent with a MAR assumption, RT and
SFAS significantly reduce binge drinking behavior.

It is important to note that trialists have long been en-
couraged to validate treatment effect conclusions with sen-
sitivity analyses that test the robustness of results to MAR
assumption violations, but research shows that only ≈ 30%
do so (Bell et al., 2014; Powney et al., 2014) despite several
available published resources (e.g., Creemers et al., 2010,
2011; Cro et al., 2020; Iddrisu & Gumedze, 2020; Kenward,
2015; Leacy et al., 2017; Mallinckrodt et al., 2014). Two
popular and easily implemented techniques that leverage
multiple imputation missing data handling procedures are
briefly illustrated here: “jump to reference” and the “delta
method”.

MAR assumes that the response variable distribution
for treatment group participants who drop out at any time
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Figure 1 MAR Model for Murphy et al. (2019) BINGE

point is more like the distribution for treatment group
participants who completed the study (Carpenter & Ken-
ward, 2007) consistent with an “intent to treat” (ITT) data
analysis perspective (Little & Yau, 1996). In contrast, an
“as-treated” perspective assumes, by virtue of removing
themselves from exposure to treatment, that the response
variable distribution for treatment group participants who
drop out is more like the distribution for control group
participants (Little & Yau, 1996; Ratitch et al., 2013). The
“Jump-to-reference” procedure uses multiple imputation
to test MAR and intent-to-treat assumptions by handling
missing data from an “as-treated” perspective in four steps:
1) Identify participants with complete data in the two treat-
ment groups (RT & SFAS; e.g., pattern 1 in Table 1) and
save their data to a separate file; 2) with the remaining
data, use the MAR model (Figure 1) to conduct model-
based (or H0: model) multiple imputation to obtain m im-
puted datasets (see Graham et al., 2007, for recommen-
dations); 3) merge the treatment group complete data file
from Step 1 back into each of the m imputed data files
created in Step 2; 4) analyze the merged m multiple im-
putation data files using the MAR analysis model and ob-
tain pooled estimates (Ratitch et al., 2013; Kenward, 2015;
Mallinckrodt et al., 2014). Jump-to-reference follows an as-
treated perspective because the treatment group missing
data in the Step 2 file will be imputed based heavily on con-
trol group participants with no missing data. Results from
applying the jump-to-reference procedure (m = 20) to the
BINGE data showed significant treatment group effects: RT
(γ01 =−1.71, p < .05), SFAS (γ12 =−1.11, p < .05), suggest-
ing treatment group effects are robust to deviations from
specific MAR and intent-to-treat assumptions.

In contrast to the jump-to-reference method that tests

the ITT assumption, the delta method tests a very differ-
ent and hypothetical scenario. Specifically, if treatment
group participants who dropped out had remained in the
study and their BINGE drinking scores could have been col-
lected, then a reasonable question could be posed: How
much of an increase in BINGE drinking scores would need
to have been observed before SFAS treatment group effects
(recall that RT had no effect on binge drinking scores over
time) would no longer be significant? The delta method
refers to a quantity (delta [δ]) that is computed in Cohen’s
d response variable units and added to the multiply im-
puted BINGE response variable scores of treatment partic-
ipants who dropped out (Cro et al., 2020). Specifically, the
observed average post-baseline BINGE standard deviation
was 4.15, so a value of 4.15 defines a Cohen’s d value of one.
Further, a delta value that indicates an increase in BINGE
drinking consistent with a “small” effect size (d = 0.25)
would be δ = (4.15 × 0.25) = 1.04. After using the MAR
analysis model (Figure 1) to conduct model-based multi-
ple imputation for all BINGE missing data, but prior to an-
alyzing the imputed data, the value of δ = 1.04 is added
to: 1) the 1-, 6-, and 12-month BINGE scores for treatment
group participants who dropped out post-baseline (i.e., Ta-
ble 1, pattern 8); 2) the 6- and 12-month follow-up scores
for treatment group participants who dropped out after
the 1-month follow-up (i.e., Table 1, pattern 4); and 3) to
the 12-month follow-up scores for treatment participants
who dropped out after the 6-month assessment (i.e., Table
1, patterns 2 and 6). Delta method results showed that if
the binge drinking scores of treatment group participants
who dropped out could have been collected and showed
an increase by only a small (d = 0.25, δ =1.04) effect size
amount, the treatment effect for SFAS (i.e., recall BINGE
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Figure 2 A Focal Pattern Mixture MNAR Model

drinking scores significantly decreased over time for SFAS
participants) would no longer be significant (γ12 = −0.97,
p > .05). Jump to reference and delta method Mplus code
examples are provided in the supplemental appendix (see
Appendices A1-A4, pp. 2-5).

At this point, many researchers might understandably
be experiencing confusion. On the one hand, researchers
would be satisfied with both significant treatment effect es-
timates as well as the additional information gained from
further “jump to reference” and delta method exploration.
On the other hand, researchers could reasonably be won-
dering: “If MNAR is suspected, why bother starting with a
MAR analysis and pursuing subsequent sensitivity testing?”
Three answers can be given to this question, all of which
are important to keep in mind when undertaking a MNAR
investigation. First, results from MAR stress tests show the
conditions under which treatment effect estimates remain
(“jump to reference”) or do not remain (delta method) sig-
nificant. Second, although a longitudinal MAR model does
nothing to appropriately address suspected MNAR data
(Carpenter & Kenward, 2007), it is the most parsimonious
data analytic model that handles missing data correctly
(e.g., to avoid listwise deletion). Third, and most impor-
tantly, parsimonious MAR treatment effect estimates pro-
vide an acceptable starting point from which to determine
whether additional MNAR analyses corroborate or contra-
dict those results (Enders, 2022; Muthén et al., 2011).

Traditional MNAR Models

A sensitivity analysis to test suspected MNAR begins with
three traditional MNAR models: pattern mixture, shared

parameter, and selection. The three models will be spec-
ified to assess both focal and diffuse MNAR possibilities
for the BINGE data. A fourth hybrid model is introduced
and included as a test of the conditional independence as-
sumption, as will be shown.

Pattern Mixture Model (Hedeker & Gibbons, 1997; Little,
1995, 2009).

A focal pattern mixture MNAR model (Demirtas & Schafer,
2003; Hedeker & Gibbons, 1997; Little, 1995, 2009; Verbeke
& Molenberghs, 2000) specified for the BINGE trial data
analysis model is shown in Figure 2 (see supplemental Ap-
pendix B, p. 6, for linear model Equations 5-8 and relevant
Mplus input syntax). Including dummy-coded missing
data indicators as additional predictors of trajectory ran-
dom effect variance (γ03 & γ13) implies both the presence
of substantively different subgroups with unique expected
trajectories, and that treatment effects (γ01 −γ12; see sup-
plemental Appendix B, p .6, for linear model Equations 5-8
and the relevant Mplus input syntax) need to be estimated
conditional on the effects of dropout (d1-d3). Conditional
independence in the pattern mixture model assumes that
observed and missing response variable data are unrelated
conditional on estimating dropout-specific trajectory fixed
effects (Little, 1995, 2009). In addition, a pattern mixture
MNAR model further assumes that: 1) BINGE response
variables are normally distributed, 2) missing data is MAR
within each dropout pattern, and 3) all dropout patterns
have the same residual covariance matrix (Enders, 2011b,
2011a; Fitzmaurice et al., 2001; Hedeker & Gibbons, 1997,
2006; Hogan & Laird, 1997; Muthén et al., 2011).
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Figure 3 A Diffuse Pattern Mixture MNAR Model

Prior to estimation, properly identifying a pattern mix-
ture MNAR model requires recalling MAR model results
that showed a quadratic fixed effects model best captured
BINGE changes over time (results assuming MAR). A min-
imum of three observed data points is needed to specify a
quadratic model, so a quadratic model is not identified for
participants dropping out at the first (d1 = 1) or second (d2
= 1) post-baseline assessment but is identified if a partici-
pant dropped out at the third post-baseline assessment (d3
= 1). Pattern mixture model identification is achieved by 1)
centering linear slope and quadratic change latent variable
loadings so that the intercept fixed effect is defined as the
expected BINGE drinking value at the baseline assessment
(Enders, 2011b), and 2) constraining separately to equality
the effects of the dummy indicators as predictors of the in-
tercept and linear slope random effects (γ03 & γ13 respec-
tively). Results from fitting the focal pattern mixture model
shown in Figure 2 and Table 2 to the BINGE data show that,
conditional on dropout, RT (γ01 = −1.78; p < .001) and
SFAS (γ12 =−1.24; p < .05) remained significant predictors
of the BINGE intercept and slope random effects, respec-
tively. Stated differently, conditional on modeling the pre-
dictive effects of different dropout groups on the average
BINGE drinking trajectory as a missing data model, RT and
SFAS again significantly reduced BINGE drinking behavior.

Further, as originally described in Hedeker and Gib-
bons (1997), a diffuse pattern mixture MNAR model can be
specified by adding interactions between treatment groups
and dummy dropout indicators, which is shown in Figure 3
(see supplemental Appendix C, p. 7, for linear model Equa-
tions 9-12 and relevant Mplus input syntax) for the BINGE
data. Model identification is achieved by constraining both
the main effects of dummy indicators and the dummy in-

dicators by treatment group interaction terms as predictors
of intercept and linear slope random effects separately to
equality. Results from fitting the diffuse pattern mixture
MNAR model in Figure 3 showed that both RT (γ01 =−1.82;
p < .001) and SFAS (γ12 = −1.31; p < .05) again remained
significant predictors of the intercept and slope random
effects, respectively. Conditional on estimating the differ-
ential predictive effects of dropout groups on the average
BINGE drinking trajectory as moderated by random as-
signment as a missing data model, RT and SFAS still sig-
nificantly reduced BINGE drinking behavior. Further, as
shown in Table 2, if the pattern mixture focal model and
pattern mixture diffuse model are both compared against
the MAR model, the ∆AIC (-3.35, -17.75) and ∆BIC (-11.30,
-41.59) values are negative, suggesting support for the MAR
model (Although not shown here, a random coefficient pat-
tern mixture model [Little, 1993, 1994, 1995] can also be es-
timated. Examples can be found in Enders [2010, pp. 306-
312; 2011b; 2011a; 2022, pp. 385-388]).

Shared Parameter Model (Wu & Carroll, 1988).

A shared parameter model assumes that response variable
score changes over time, as captured by the growth trajec-
tory random effects (assumed to be distributed normally),
predict dropout (i.e., the survival indicators s1 - s3). Con-
ditional independence for a shared parameter model (Wu
& Carroll, 1988) assumes that observed response variable
data and missing data indicators are independent condi-
tional on shared parameters: the growth trajectory random
effects. Further, because trajectory random effects pre-
dict dropout indicators, and random effects are estimated
based on all available response variable data, shared pa-
rameter models are diffuse only; there is no focal shared
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Figure 4 Diffuse Shared Parameter MNAR Model #1 Figure 5 Diffuse Shared Parameter MNAR Model #2

parameter model. A diffuse shared parameter model that
specifies only random trajectory effects as predictors of
dropout indicators is shown in Figure 4 (see supplemental
Appendix D, p. 8, for linear model Equations 13-19 and the
relevant Mplus input syntax) for the BINGE data. Shared
parameter model identification is achieved by constraining
the effects of intercept and slope random effects as predic-
tors of dropout separately to equality. Results from fitting
the first diffuse shared parameter MNAR model (see Table
2) to the BINGE data showed that both RT (γ01 = −1.74;
p < .001) and SFAS (γ12 = −1.25; p < .05) remained signifi-
cant predictors of intercept and slope random effects. Con-
ditional on the inclusion of a missing data model that spec-
ifies BINGE drinking response variable trajectory compo-
nents as predictors of dropout missing data, RT and SFAS
again significantly predicted decreases in BINGE drinking
behavior.

Further, a second diffuse shared parameter model that
includes independent variable groups as predictors of
missing data is shown in Figure 5 (see supplemental Ap-
pendix E, p. 9, for linear model Equations 20-26 and the
relevant Mplus input syntax). As shown in Table 2, re-
sults from estimating the additionally diffuse shared pa-
rameter model again indicated that both RT (γ01 = −1.76;
p < .001) and SFAS (γ12 = −1.25; p < .05) remained sig-
nificant predictors of intercept and slope random effects,
respectively. Conditional on estimating the effects of both
randomization and BINGE drinking trajectories as a miss-
ing data model, RT and SFAS still significantly reduced
BINGE drinking behavior. Additionally, if the second dif-
fuse shared parameter model is estimated by replacing the
survival dropout indicators (s1-s3) with multinomial miss-
ing data indicators (m1-m3 in Table 3) as a sensitivity anal-

ysis (see supplemental Appendix F, p. 10, for the relevant
Mplus input syntax), the treatment effect estimates both
remained significant and changed negligibly. Finally, a
shared parameter MAR model can be estimated by fixing
the effects of random trajectory latent variables as miss-
ing data indicator predictors to zero. If such a shared pa-
rameter MAR model is compared to both diffuse models,
negative ∆AIC (-1.68, -3.45) and ∆BIC (-1.68, -11.40) values
again suggested support for the MAR model.

Hybrid MNAR Model (Yuan & Little, 2009).

A hybrid MNAR model proposed by Yuan and Little (2009)
that expands upon the second diffuse shared parameter
model shown previously to include droptime as a random
effects predictor consistent with pattern mixture specifi-
cations is shown Figure 6 (see supplemental Appendix G,
pp. 11-12, for linear model Equations 27-33 and the rele-
vant Mplus input syntax) for the BINGE data. The shared
parameter model in Figure 5 is nested within the hybrid
model, so that the hybrid model can be viewed as a test of
the shared parameter model conditional independence as-
sumption using nested model comparisons (Yuan & Little,
2009). Results from fitting the hybrid model to the BINGE
data (Table 3) again showed significant treatment effect es-
timates: RT (γ01 = −1.80, p < .001), SFAS (γ12 = −1.22,
p < .01). The hybrid model (Log L = −3,823.51; B IC =
7,784.42) was also shown to be a significantly better fit to
the BINGE data versus the second diffuse shared parame-
ter model (Log L =−4,018.25; B IC = 8,161.94; χ2

2 = 389.48,
p < .001), which calls into question the shared parameter
model conditional independence assumption. Even if both
different dropout groups and observed BINGE drinking tra-
jectories are included in a model of dropout missing data
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Figure 6 A Hybrid MNAR Model Figure 7 A Focal Selection MNAR Model

and given that the conditional independence assumption
was shown to be questionable as a result, RT and SFAS were
still shown to significantly reduce BINGE drinking behav-
ior.

Selection MNAR Model (Diggle & Kenward, 1994).

In direct contrast to assuming conditional independence,
a selection MNAR model (Heckman, 1976, 1979) assumes
survival dropout indicators at specific time points are pre-
dictable by observed BINGE scores at the same time points
because the missing data itself contains information about
the unobserved response variable values. However, se-
lection MNAR models are inestimable unless a strong as-
sumption of multivariate normally distributed data is in-
voked because response variable data at each post-baseline
assessment time point are observed if s1-s3 = 0 but are
missing if s1-s3 = 1. A focal selection MNAR model is
shown in Figure 7 (see supplemental Appendix H, p. 13,
for linear model Equations 34-40 and the relevant Mplus
input syntax) for the BINGE data. Selection model iden-
tification is achieved by constraining the effects of BINGE
scores at a given time point as predictors of missing data
at the same time point to equality. Results from fitting
the focal selection MNAR model to the BINGE data (Ta-
ble 3) again showed significant treatment group effects: RT
(γ01 = −1.78, p < .001), SFAS (γ12 = −1.25, p < .05). Stated
differently, if the unobserved values contain information
about why BINGE drinking data is missing, and indicators
of missing data at a given assessment time point are pre-
dicted by assessment time point-specific observed BINGE
drinking data as a missing data model, RT and SFAS re-
mained significant predictors of reduced BINGE drinking
behavior,

Also shown in Table 3 are three possible diffuse se-

lection MNAR models for the BINGE drinking data. The
first diffuse selection model adds observed BINGE drink-
ing scores at the previous assessment time point, or lagged
missing data predictions, to the missing data model as
shown in Figure 8 (see also supplemental Appendix I, p.
14 for linear model Equations 41-47 and relevant Mplus in-
put syntax). The effects of the lagged predictions are con-
strained to equality over time to facilitate model identi-
fication. Results from fitting the diffuse selection MNAR
model with lagged predictions to the BINGE data (Table
3) again showed significant treatment group effects: RT
(γ01 =−1.78, p < .001), SFAS (γ12 =−1.26, p < .05).

A second diffuse selection MNAR model replaces
lagged predictions with independent variable groups as
predictors in the missing data model as shown in Figure 9
(see supplemental Appendix J, p. 15, for linear model Equa-
tions 48-54 and the relevant Mplus input syntax), where
the effects of the independent variable groups as missing
data predictors are also separately constrained to equal-
ity. Results from fitting the diffuse selection MNAR model
with independent variable group missing data predictions
to the BINGE data (Table 3) also again showed significant
treatment group effects: RT (γ01 = −1.77, p < .001), SFAS
(γ12 =−1.25, p < .05).

The third diffuse selection MNAR model combines the
previous two by adding both lagged predictors and inde-
pendent variable groups to the missing data model, with
all effects separately constrained to equality, as shown
in Figure 10 (see supplemental Appendix K, p. 16, for
linear model Equations 55-61 and relevant Mplus input
syntax). Results again showed significant treatment effects:
RT (γ01 =−1.78, p < .001), SFAS (γ12 =−1.26, p < .05). Fur-
ther, if the focal selection MNAR model with both lagged
and independent variable predictors is estimated by re-
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Figure 8 Diffuse (Lag Prediction) Selection MNAR Model Figure 9 Diffuse (IV Group Prediction) Selection MNAR
Model

placing the survival dropout indicators (s1-s3) with multi-
nomial missing data indicators (m1-m3; see supplemen-
tal Appendix L, p. 17, for the relevant Mplus input syntax)
in Figure 10 as a sensitivity analysis (Table 3), the treat-
ment group effect estimates again remain significant and
changed negligibly. Taken together, diffuse selection model
results suggested that conditional on estimating missing
data explanatory models that include same time point re-
sponse variable data, previous time point response variable
data, and random assignment as predictors of dropout,
RT and SFAS remained significant predictors of decreased
BINGE drinking behavior.

At this point, a researcher might wonder why five dif-
ferent selection models are needed. Two answers can be
offered. First, both focal and diffuse MNAR are plausible
possibilities for missing BINGE data, so both warrant inves-
tigation. Second, the purpose of a MNAR sensitivity anal-
ysis is to test the robustness of treatment effect estimates
as model specification (e.g., focal and diffuse) and miss-
ing data code (survival or multinomial) changes are imple-
mented to reflect different missing data assumptions. Fi-
nally, two conclusions can be drawn from examining all
selection MNAR model results in Table 3. First, treatment
effects remained significant across all models and the es-
timates varied negligibly. Said differently, testing different
MNAR assumptions did not change initial MAR treatment
effect analysis results. Second, in contrast to the pattern
mixture and shared parameter models, there is no single
appropriate comparison MAR selection model. The ap-
propriate MAR model for each selection MNAR model is
obtained by constraining the effects of predicting missing
data indicators (s1-s3) at each time point by observed re-

sponse variable data at that time point (shown as dashed
arrows in Figures 7-10) to zero. When each selection MNAR
model is compared to its appropriate MAR counterpart, all
∆AIC (range: -2.48, -3.29) and ∆BIC (range: -6.45, -7.26)
values were negative, suggesting support for the MAR mod-
els.

Mixture Trajectory MNAR Models

Traditional MNAR models have expanded to include fi-
nite mixture modeling specifications for two reasons. First,
modeling the unknown relationship between observed re-
sponse variable data and missing response variable data is
more easily accomplished within mixture models that both
allow trajectory random effect means and missing data in-
dicator point estimates to vary across unobserved mixture
trajectories. This allows the unknown observed data and
missing data distributional relationship to be modeled via
semi-parametric “support” or “pillar” points defined by the
separate response variable trajectories (e.g., Nagin, 1999)
which reduces the risk of model misspecification. Sec-
ond, all traditional MNAR models assume either normally
distributed response variable or normally distributed la-
tent trajectory variable data. Semi-parametric longitudi-
nal mixture modeling can better handle both non-normal
response variable (see Micceri, 1989) data (which violates
pattern mixture and selection MNAR model assumptions)
and non-normal trajectory random effects (which violate
shared parameter model assumptions; e.g., see Bauer &
Curran, 2003). As such, longitudinal finite mixture MNAR
models can be viewed as additional sensitivity tests of
traditional MNAR model normality assumptions (Enders,
2011b, 2011a; Muthén et al., 2011). However, it is important
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Figure 10 A Diffuse (Lag & IV Group Prediction) Selection
MNAR Model

Figure 11 MAR Mixture Model

Table 4 Estimates for Mixture MNAR Models (all k = 2 latent trajectories)

Selection (Muthén et al., 2011)
MAR Dropout 1 Muthén-Roy 2 Beunckens 3 Hybrid 4 Model 1 Model 2 Model 3

RT� Intercept -1.23 (0.36)** -1.22 (0.36)** -1.06 (0.36)** -1.18 (0.35)** -1.76 (0.47)** -0.73 (0.35)* -1.05 (0.35)** -1.12 (0.36)**
SFAS� Slope -1.26 (0.51)* -1.26 (0.50)* -1.16 (0.46)* -1.28 (0.49)** -1.26 (0.51)* -1.05 (0.47)* -1.24 (0.52)* -1.21 (0.52)*

Estimates 18 18 24 23 25 29 30 40
Log L -3763.16 -3763.99 -3728.11 -3961.55 -4093.74 -3829.84 -3881.57 -3850.1
AIC 7562.32 7563.97 7504.22 7969.09 8237.48 7717.67 7823.14 7780.20
BIC 7633.85 635.50 7599.59 8060.49 8336.82 7832.91 7942.35 7812.23

Note. ** : p < .01; * : p < .05; NA = not applicable. 1: Roy (2003); 2: Muthén et al. (2011); 3: Beunckens et al. (2008); 4: Gottfredson et al. (2014).

to note that if no evidence for heterogeneity is found (i.e., if
a MAR mixture model does not fit better than a MAR model
assuming homogeneity), mixture modeling need not be
pursued.

A longitudinal mixture model assuming MAR is shown
in Figure 11 (see also supplemental Appendix M, p. 18, for
linear model Equations 62-66 and the relevant Mplus in-
put syntax) for the BINGE data, where C represents a cat-
egorical latent variable that contains k = 2, 3, . . . , K la-
tent mixture trajectories. Further, when k = 2–4 possible
mixture trajectories were tested, a k = 2 trajectory mixture
MAR best modeled BINGE drinking heterogeneity and bet-
ter fit the BINGE data (Table 4; Log L = −3,763.16, B IC =
7,633.85) versus the conditional MAR (k = 1) model (Table
2; Log L =−3,820.60, B IC = 7,724.82) and treatment group
effect estimates remained significant: RT (γ01 = −1.23,
p = .001), SFAS (γ12 = −1.26, p < .05). This suggests that
the BINGE data treatment group effects could be further
tested with additional MNAR mixture models. For all mix-
ture MNAR analyses that follow, k = 2–4 mixture models
were tested, but models that resulted in estimation errors
or extracted mixture trajectories containing less than 10%

of the sample (Nagin, 1999) were not considered. As a re-
sult, a k = 2 trajectory model best fit the BINGE data for all
mixture MNAR models that follow. The mixture MAR analy-
sis results showed that if BINGE sample data heterogeneity
is modeled by estimating two unobserved subgroups with
distinctly different drinking trajectories, RT and SFAS re-
mained significant predictors of decreased BINGE drink-
ing.

Roy (2003) Dropout Model.

The traditional pattern mixture model assumes that par-
ticipants who drop out at the same time point have the
same response variable distribution. Roy’s (2003) mix-
ture model extracts unobserved trajectories based on re-
sponse variable distributional similarities, which is as-
sumed to be a better dropout model and avoids the miss-
categorization that could occur in pattern mixture mod-
els. Roy’s model further assumes that, conditional on mix-
ture trajectory extraction with dummy dropout indicators
as predictors, response variable distributions are uncorre-
lated with dummy dropout indicators (conditional inde-
pendence; Dantan et al., 2008) and missing data within
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Figure 12 Roy’s (2003) Dropout Model Figure 13 Muthén-Roy Model

each mixture trajectory is MAR. Roy’s dropout model is
shown in Figure 12 (see supplemental Appendix N, p. 19,
for linear model Equations 67-71 and the relevant Mplus
input syntax). Results from fitting the Roy’s (k = 2) model
to the BINGE data (Table 4) shows that significant treat-
ment group effects remained: RT (γ01 = −1.22, p < .001),
SFAS (γ12 = −1.26, p < .05). Conditional on estimating
a missing data model that assumes dropout missing data
is better modeled via mixture trajectory extraction based
on dropout group prediction rather than modeled with
pattern mixture model assumptions and possible miss-
classification, results again showed RT and SFAS to signif-
icantly reduce BINGE drinking behavior. However, critics
of the Roy (2003) dropout model (see Muthén et al., 2011)
note that mixture trajectories are extracted based only on
observed response variable data, not missing data. As a re-
sult, mixture trajectory distributions may be confounded
with, rather than independent of, dropout.

Muthén et al. (2011) Model.

The Muthén-Roy (Muthén et al., 2011; see also Power et
al., 2012) model addresses the Roy model criticism of fi-
nite mixture trajectories being confounded with dropout
missing data by estimating two latent categorical variables:
one that contains k = 2, 3, . . . , K continuous response vari-
able mixture trajectories, the other that contains d = 2, 3,
. . . , D binary dropout missing data mixture classes. Rather
than assuming independence between the mixture trajec-
tories and dropout indicators, the Muthén-Roy model as-
sumes that latent response variable finite mixture trajecto-
ries are moderated by latent dropout classes. The Muthén-
Roy model is shown in Figure 13 (see supplemental Ap-
pendix O, pp. 20-21, for linear model Equations 72-77 and
the relevant Mplus input syntax) for the BINGE data.

Recall that specifying and estimating unidentified pa-

rameters in the pattern mixture model was aided by cen-
tering slope loadings such that the intercept mean was de-
fined as the expected BINGE value at baseline. This spec-
ification is extended to the mixture Muthén-Roy model by
separately constraining mixture trajectory intercept means
to equality across dropout missing data classes (i.e., see
supplemental Appendix O, p. 20; α0k in Equation 73 has
no d subscript; Muthén et al., 2011). Results from fitting
the Muthén-Roy model (k = 2, d = 2) to the BINGE data
again (Table 4) showed significant treatment group effects:
RT (γ01 =−1.06, p < .01), SFAS (γ12 =−1.16, p < .05). Con-
ditional on estimating a dropout missing data model that
specifies latent response variable mixture trajectories mod-
erated by latent dropout classes, Muthén-Roy model results
still showed that RT and SFAS significantly reduced BINGE
drinking behaviors.

Beunckens et al. (2008) Model.

Beunckens et al. (2008) developed a mixture extension of
a shared parameter (Wu & Carroll, 1988) model (see Equa-
tion 7, p. 101 in Beunckens et al., 2008) that was designed
to minimize the number of estimated parameters without
a loss of information. The Beunckens model is shown in
Figure 14 (see supplemental Appendix P, pp. 22-23, for
linear model Equations 78-85 and the relevant Mplus in-
put syntax) for the BINGE data. The intercept random ef-
fect predicts survival dropout indicators at all post-baseline
time points, and those prediction slopes are constrained
to equality for parsimony and model identification pur-
poses. This specification illustrates a key assumption of
the Beunckens et al. (2008) model: that the response vari-
able model and the missing data model are now indirectly
related (conditional independence) through the shared in-
tercept (η0i ; Beunckens et al., 2008; Muthén et al., 2011).
The effects of RT and SFAS as predictors of dropout miss-
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Figure 14 Beunckens et al. (2008) Model. Gray stars indi-
cate logit intercepts re-scaled to follow a quadratic trend.

Figure 15 Gottfredson et al. (2014) Shared Parameter Hy-
brid Mixture Model (SPMM)

ing data are also constrained to equality. Further, as in-
dicated in Figure 14 (gray stars), the s2 and s3 survival
dropout logit intercepts are re-scaled to follow a quadratic
fixed effect trend similar to the response variable expected
trajectory that best describes average BINGE drinking over
time. Fitting the Beunckens et al. model (k = 2) to the
BINGE data (Table 4) again showed significant treatment
group effects: RT (γ01 =−1.18, p < .01), SFAS (γ12 =−1.28,
p < .01). Conditional on the estimation of a missing data
model that includes mixture trajectory extraction and as-
sumes that a shared trajectory intercept, randomization,
and latent mixture trajectory membership adequately pre-
dict dropout missing data indicators whose logit intercepts
have been constrained to follow a quadratic trend, RT and
SFAS remained significant predictors of decreased BINGE
drinking.

Gottfredson et al. (2014) Hybrid Model.

Similar to the Yuan and Little (2009) hybrid MNAR model,
Gottfredson et al. (2014) developed a hybrid mixture MNAR
model: a shared parameter mixture model (SPMM). Like
the shared parameter model, the SPMM also assumes that
longitudinal trajectory random effects are the mechanism
behind missing data and the SPMM will produce biased re-
sults if this assumption is false. The SPMM, like the shared
parameter model, also assumes conditional independence:
BINGE trajectory random effects and survival missing data
codes are independent conditional on finite mixture trajec-
tories. The mixture trajectories serve as the new shared pa-
rameters to model the relationship between trajectory ran-
dom effects and missing data indicators. This is assumed to
reduce parameter estimate bias due to non-normal trajec-

tory random effects or missing data model misspecification
(Gottfredson et al., 2014). A Gottfredson SPMM is shown in
Figure 15 (see supplemental Appendix Q, pp. 24-25, for lin-
ear model Equations 86-91 and the relevant Mplus input
syntax) for the BINGE data.

In contrast to previous MNAR models that required
dummy or survival missing data models, SPMM assumes
that including a single missing data indicator variable
(summary) is sufficient as a missing data model. Further,
the SPMM specifies that each trajectory-specific mean es-
timate is multiplied by the proportion of the sample each
mixture trajectory contains, then pooled across mixture
trajectories (see supplemental Appendix Q, p. 24; the p su-
perscripts shown in Equations 87-89 represent pooling of
the three trajectory means [αp

0k , αp
1k , & α

p
2k ]). Results from

fitting the Gottfredson SPMM (k = 2) to the BINGE data
(Table 4) again showed significant treatment group effects:
RT (γ01 =−1.76, p < .001), SFAS (γ12 =−1.26, p < .05). Con-
ditional on the estimation of a missing data model that as-
sumes mixture trajectory membership and random assign-
ment as predictors of a single ‘summary’ missing data indi-
cator, RT and SFAS were again shown to be significant pre-
dictors of decreased BINGE drinking,

Selection Mixture Model (Muthén et al., 2011).

A selection mixture MNAR model is created by expanding
the traditional selection model to allow for mixture trajec-
tory extraction. The selection model for the BINGE data
is shown in Figure 16 (see supplemental Appendices R-
T, pp. 26-31, and linear model Equations 92-115). Also
shown in Figure 16 (gray stars) is the specification that sur-
vival missing data logit intercepts are again constrained to
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Figure 16 Selection Mixture Model. Gray stars indicate logit intercepts re-scaled to follow a quadratic trend.

follow a quadratic trend consistent with the average ex-
pected change in BINGE scores over time as was speci-
fied in the Beunckens et al. (2008) model. As shown in
Muthén et al. (2011), an internal sensitivity analysis can
be performed by estimating three selection mixture models
(Model 1 – Model 3) with each successive model increas-
ing in the number of estimated parameters. Model 1 is
specified by constraining missing data indicator prediction
slopes to equality both across time and between mixture
trajectories, while the missing data indictor logit intercepts
are estimated freely over time but constrained to equality
between mixture trajectories. Model 2 specifications differ
from Model 1 in that both missing data indicator prediction
slopes and missing data indictor logit intercepts are esti-
mated freely across mixture trajectories, but not over time.
Model 3 specifications differ from Model 2 in that missing
data indicator prediction slopes are freely estimated both
over time and across mixture trajectories.

Results from fitting selection mixture (k = 2) Models
1-3 to the BINGE data (Table 4) again showed significant
treatment effects across models: Model 1: RT (γ01 =−0.73,
p < .05), SFAS (γ12 = −1.05, p < .05); Model 2: RT (γ01 =
−1.05, p < .01), SFAS (γ12 = −1.24, p < .05); Model 3: RT
(γ01 = −1.12, p < .01), SFAS (γ12 = −1.21, p < .05). Con-
ditional on estimating a missing data model that extends
the assumptions of the focal and diffuse selection models
to a mixture model that includes constraints on the missing
data indicator logit intercepts consistent with Beunckens et
al.’s (2008) model specification, RT and SFAS still remained
significant predictors of decreased BINGE drinking behav-
ior.

Summary Discussion and Specific Recommendations

Murphy et al. (2019) conducted a longitudinal trial to test
if brief MI paired with either relaxation training (RT) or
substance-free activity sessions (SFAS) effectively reduced
binge drinking in a sample of undergraduate college stu-
dents. MNAR was suspected because participants that
dropped out of the BINGE trial could have done so due to
consequences associated with binge drinking behavior. Re-
call how an MNAR investigation should begin with the in-
clusion of effective auxiliary correlates (Enders, 2022), but
none of the additional data collected in the BINGE trial
met criteria for auxiliary correlate inclusion. On the one
hand, a MNAR-by omission process remains a possibility
due to a lack of auxiliary variables. On the other hand,
Thoemmes and Rose (2014) have shown that, under spe-
cific conditions, auxiliary correlates can increase, rather
than decrease, bias and complicate the MNAR issue in un-
known ways.

At this point, research trialists could ask two practical
questions regarding suspected MNAR investigations. Given
that MNAR: 1) cannot be handled with any MAR missing
data handling method, 2) can only be suspected and for
which no definitive test exists, 3) requires the addition of a
model that describes the possible relationship between ob-
served and missing response variable data, and 4) all possi-
ble models rely on assumptions that cannot be tested, a re-
searcher would understandably wonder, first, what results
should be reported from an MNAR sensitivity test. There
are two pitfalls to be avoided. As stated previously, re-
searchers should conduct as thorough a MNAR sensitivity
testing procedure as is possible and avoid the temptation to
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test MNAR suspicions with a single model or arbitrarily se-
lected subset of models. Such temptations assume that the
selected model optimally describes the observed response
data and missing response data relationship, which cannot
be verified. Second, researchers should avoid the tempta-
tion to present only the subset of models showing the most
favorable treatment effects.

Muthén et al. (2011) assert that the dispositive ques-
tion is whether treatment effect estimates from MAR anal-
ysis results are corroborated or contradicted by an MNAR
sensitivity analysis. Enders (2022) further asserts that all
MNAR models are possible plausible explanations for why
response variable data might be missing. Rather than an
take an “either/or” approach to Muthén et al. (2011) and
Enders (2022), we recommend a “both/and” approach to
be most helpful to trialists who are tasked with answer-
ing the question of whether a treatment is beneficial. For
example, regarding the BINGE trial results, and in keep-
ing with both Enders (2022) and Muthén et al. (2011), the
results of the MAR analysis model are corroborated by
an extensive MNAR sensitivity investigation: RT and SFAS
significantly reduce binge drinking behavior. Further, al-
though not definitive, a researcher could also cite: 1) ∆AIC
and ∆BIC statistics that show, when each MNAR model
is compared against its appropriate MAR counterpart, re-
sults suggested support for the MAR model, 2) “jump to
reference” results showed that MAR BINGE results were ro-
bust to deviations from an intent to treat analytic perspec-
tive, but 3) delta modeling results showed that the signif-
icance for substance-free activity sessions (SFAS) reduc-
ing binge drinking are questionable if dropouts hypothet-
ically increased their binge drinking by only a relatively
small (d = 0.25) effect size. Further, consistent with Enders
(2022), researchers can present the results of all models,
such as in Tables 2-4, in the interests of transparency and
further state that, although very different in magnitude, the
treatment effects for RT and SFAS remained significant and
in the expected direction, and that such estimate variation
is to be expected because the different MNAR models make
very different assumptions about the observed and missing
response variable data relationship.

These suggestions beg an obvious second question:
What should a researcher do if the results of an extensive
MNAR sensitivity analysis produced a “mixed bag” of sta-
tistically significant and statistically non-significant treat-
ment effect results? Treatment effect questions are central
to longitudinal trials, and treatment effects that show sta-
tistical significance for some models and non-significance
for others can be problematic. If available, two additional
sources of information could prove helpful. First, Muthén
et al. (2011) showed how a binary distal outcome variable
can be added to MNAR models to further test treatment ef-

fect results. For example, in the BINGE trial, if a binary in-
dicator of whether participants were subsequently placed
on academic probation or suspension were available for in-
clusion, it could serve as a validity check on MNAR results.
Second, researchers have long advocated for follow-up in-
terviews to be conducted with longitudinal trial partici-
pants who drop out. Such interviews could provide specific
information as to the relationship between the response
variable and why participants left the study. Such informa-
tion is most critical prior to any attempt to estimate treat-
ment effects. Absent additional distal outcome or interview
data, researchers faced with a “mixed-bag” of treatment ef-
fects should suspend judgment on the question of efficacy
until the trial can be replicated.

Limitations and Additional Possibilities

This paper used a “wide” data format with latent growth
models and maximum likelihood estimation to investigate
MNAR suspicions. MNAR models can also be estimated us-
ing a “long” data format and longitudinal HLM (also called
longitudinal multilevel models or longitudinal mixed lin-
ear models) specifications that have been shown to possi-
bly provide a modicum of protection against model mis-
specification and parameter estimate bias (Gottfredson et
al., 2017). Further, although ML estimation was the focus of
this tutorial, research has shown that Bayesian estimation
(e.g., Asparouhov & Muthén, 2021; Du et al., 2021; Lüdtke
et al., 2020) and additional multiple imputation techniques
(Carreras et al., 2021; Hsu et al., 2020) can also be used
for MNAR investigations. In summary, several options are
available to researchers, and the goal of this paper is to con-
tribute practical and hands-on application materials to the
published literature to enable trialists to investigate sus-
pected MNAR data in a longitudinal trial and draw defensi-
ble treatment conclusions with confidence.
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