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Abstract This research note elaborates on addressing dependency in effect size data and serves
as a companion to our tutorial on fitting three-level meta-analytic models in R (Assink & Wibbe-
link, 2016). We provide a description of effect size and standard error dependency, explain how
both the multilevel and multivariate meta-analytic models handle these types of dependency, and
discuss the role of alternative methods in addressing dependency in effect size data, including ap-
proximating a variance-covariance matrix and applying a cluster-robust inference method. These
alternative methods are illustrated with example R code that builds upon the effect size dataset that
we presented and analyzed in our tutorial. We conclude that more simulation studies are needed
to provide clearer guidelines for modeling dependency in effect size data and urge statisticians to
make the available technical literature further accessible to applied researchers.
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Introduction

Research synthesis in the form of meta-analysis has a dra-
matic impact on the development of cumulative knowledge
in psychology and other disciplines (DeGeest & Schmidt,
2011). As such, meta-analysis has been acknowledged as
one of the most important methodological developments
in behavioral and other sciences (Cooper et al., 2010; Egger
et al., 2001). Most conventional methods for meta-analysis
hold the assumption that the synthesis is based on effect
sizes that are not related to each other (e.g., Cheung, 2014;
Rosenthal, 1984). However, primary studies often report
multiple effect sizes that are eligible for inclusion given the
scope of a meta-analysis, implying that effect sizes are re-
lated to each other. This effect size dependency – also re-
ferred to as effect size interrelatedness or interdependency
– may occur, for instance because separate experiments
were conducted in a primary study, a primary study used
multiple methods (e.g., self-report, interviews) for assess-
ing the same construct, or the same participants were ex-
amined over multiple timepoints. In these examples, the
assumption that effect sizes are independent from each
other is clearly violated. If a meta-analyst synthesizes de-

pendent effect sizes using conventional methods for meta-
analysis, the results can be incorrect and even mislead-
ing (Borenstein et al., 2009). More specific, ignoring de-
pendency tends to underestimate standard errors that in
turn results in too narrow confidence intervals, and conse-
quently in an increased likelihood for falsely rejecting null
hypotheses (i.e., an inflated type-1 error rate; Hedges, 2009;
Snijders & Bosker, 2012).

The question how to deal with dependency in effect
size data poses an important challenge that researchers of-
ten face when conducting a meta-analysis. In the past few
decades an increasing number of scholars have devoted
considerable efforts into developing innovative statistical
techniques for analyzing dependent effect size data in
meta-analysis. One of these techniques comprises the syn-
thesis of dependent effect size data in a three-level meta-
analytic model, which we have illustrated in our prior tu-
torial (Assink & Wibbelink, 2016). Our tutorial provides an
introduction to the application of multilevel modeling to
meta-analysis, but is rather concise in describing the de-
pendencies that may occur in effect size data and the way
in which multilevel meta-analysis deals with dependency
in effect size data. This paper serves as a companion to
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our tutorial and elaborates on this issue. As technical pa-
pers as well as excellent overviewwork onmodeling effect
size dependency already exist (e.g., Becker, 2000; Cheung,
2014; Fernández-Castilla et al., 2019, 2020; Gleser & Olkin,
2009; Konstantopoulos, 2011; Tipton, 2013; Van den Noort-
gate et al., 2015), it is not our aim to give a comprehensive
review of modeling techniques nor to provide strict model-
ing guidelines. Instead, this paper elaborates on modeling
dependency in meta-analysis that complements our tuto-
rial, and offers practical information that researchers may
find useful in their own projects.

Two Types of Dependent Data Structures

Let’s first focus on the nature of dependency in effect size
data. There are two different forms of dependency that can
emerge in effect size data, although both forms can occur
in one effect size dataset. First, a single primary study may
examine two or more unique or non-overlapping groups
of participants and report an effect size for each partici-
pant group. For example, Romans et al. (1997) evaluated
the effect of Turner’s syndrome on executive functioning
of participants across three mutually exclusive age groups.
In this example, one study produces multiple effect sizes,
which were all obtained in the same “study context”. Effect
sizes produced in the same context are more similar than
effect sizes produced in different contexts, for instance
because the effect sizes were obtained by the same re-
searchers, who used the same questionnaires, which were
filled out under the same conditions. This type of depen-
dency stems from effect sizes being nested within a higher-
level cluster, which are commonly referred to as nested ef-
fect sizes. The consequence of this clustering is that one ef-
fect size tells us something about the direction and strength
of another effect size in the same cluster, and thus there is
effect size dependency.

Second, studies may assess multiple outcomes in the
same or partly the same group of participants and report
multiple effect sizes (Nakagawa et al., 2023). For example,
Boterhoven De Haan et al. (2020) compared the effective-
ness of two trauma-focused treatments for adultswith post-
traumatic stress disorder (PTSD) from childhood trauma.
The authors reportedmultiple results in their study, as they
measured PTSD symptomswith both a self-report question-
naire and a structured clinical interview. In this scenario,
overlapping groups of participants contribute tomore than
one outcome, and the effect size data are therefore “multi-
variate”. In case of multivariate effect size data, there is
not only dependency in effect sizes as they share the same
study context, but also dependency in the sampling errors
(or “sampling variances”) of these effect sizes. After all,
if the same or partly the same participants contribute to
multiple effect size estimates, then these effect sizes have

correlated estimation errors (Gleser & Olkin, 2009, p. 284)
implying there is not only effect size dependency but also
sampling error dependency.

Handling Effect Size Dependency in Advanced Meta-
Analytic Models

The question how to deal with dependency in effect size
data poses an important challenge that researchers often
face when conducting ameta-analysis. Multiple traditional
ad-hoc techniques for dealing with dependency have been
described in the literature, such as averaging effect sizes
within studies, selecting only one effect size per study, and
shifting the unit of analysis (Assink & Wibbelink, 2016).
The problem with these techniques is not only loss of in-
formation resulting in a lower statistical power, but also a
limit in research questions that can be addressed in ameta-
analysis as informative differences between effect sizes are
lost (see Cheung, 2015, for a detailed description of these
and other limitations). In the past few decades an increas-
ing number of scholars have devoted considerable efforts
into developing innovative statistical techniques for mod-
eling dependency in effect size data in meta-analysis. By
stepping away from the traditional univariate approach to
meta-analysis that assumes effect size independency, it be-
comes possible to deal with dependency in effect size data
so that all relevant effect sizes – regardless of overlapping
samples and/or contexts – can be extracted and analyzed.
By synthesizing all relevant effect sizes, a maximum of in-
formation is preserved and optimal statistical power can be
achieved (Assink & Wibbelink, 2016). Furthermore, by ex-
tractingmultiple relevant effect sizes rather than one effect
size per study the number of research questions that can
be addressed in meta-analytic research increases (Cheung,
2015). Two common statistical methods for handling de-
pendency in effect size data aremultivariate meta-analysis
and multilevel meta-analysis.

Multivariate Meta-Analysis

Analyzing effect sizes in a multivariate model is one of the
earliestmeta-analytic techniques to address dependency in
effect size data due to overlapping samples (Kalaian & Rau-
denbush, 1996; Raudenbush et al., 1988). A multivariate
meta-analysis is an extension of the traditional (univari-
ate) meta-analysis that enables a simultaneous analysis of
multiple effect sizes (or outcomes) that come from individ-
ual studies. For each of the included studies, there is not
one single effect size, but a so-called vector of effect sizes
(i.e., a one-column matrix of effect sizes) is created and
used in the analyses. When multiple effect sizes are ex-
tracted from primary studies, they can differ in strength
(and even in direction) across studies, but also within stud-
ies. The multivariate model takes both this between-study
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and within-study variability in effect sizes into account.
The within-study variability is captured by the sampling
variance-covariance matrix that is assumed to be known
and encompasses the individual variance of each effect
size as well as the relations (covariances) between the sam-
pling errors of effect sizes within an individual study. The
between-study variability is represented by the estimated
population heterogeneity variance-covariance matrix that
captures the variability in true effect sizes across studies
(Cheung, 2019). Multivariate meta-analysis offers numer-
ous benefits such as incorporatingmultiple outcomes of in-
dividual studies, examining the correlation between out-
comes, and testing for differential moderator effects (Che-
ung, 2015; Van den Noortgate et al., 2013). Moreover, mul-
tivariate meta-analysis generally leads to more precise es-
timates than univariatemeta-analysis (Price et al., 2019; Ri-
ley, 2009).

Multilevel Meta-Analysis

Multilevel meta-analyses are typically used in contexts
where effect sizes are nested in a higher-level cluster (i.e.,
a multilevel data structure). An effect size dataset is multi-
level in nature when effect sizes can be grouped together
based on one or more higher-level clustering variables,
such as experiments, studies, research groups, or countries
(e.g., Hox et al., 2017; Konstantopoulos, 2011; Raudenbush
& Bryk, 1985). A meta-analytic model that allows effect
sizes to be correlated because they share certain cluster-
level characteristics is also known as the hierarchical de-
pendence model (Hedges et al., 2010). When effect sizes
are related because they share certain cluster-level char-
acteristics (i.e., the effect sizes “cluster” together), it can be
assumed that the underlying population (or “true”) effects
are more alike within the same level of a clustering vari-
able than across different levels of that clustering variable.
This implies that effect sizes belonging to the same cluster
are dependent on each other. A meta-analyst can account
for this type of effect size dependency by adding cluster-
specific random effects to the statistical model, which im-
plies that a random effect is added to each level of the
model that corresponds to a grouping or clustering vari-
able. Such random effects meta-analytic models can ac-
count for between- and within-cluster heterogeneity in ef-
fect sizes, and thus for the within-cluster correlation in the
underlying true effects.

Although multilevel meta-analyses are commonly ap-
plied in situations with nested effect sizes, a specific appli-
cation of the multilevel meta-analysis can be used in the
context of multivariate effect sizes. Our tutorial illustrates
howdependency in effect size data due to overlapping sam-
ples can be modeled in a three-level meta-analytic model
(Assink & Wibbelink, 2016). This three-level approach to

meta-analysis was introduced by Geeraert et al. (2004) and
has been explained and described bymultiplemethodolog-
ical scholars (e.g., Cheung, 2014; Van den Noortgate et al.,
2013, 2015). In this approach, the effect size data are con-
sidered to have a hierarchical or nested structure in which
participants (level 1) are nested within outcomes (level 2),
which are nested within studies (level 3). By adding a ran-
dom effect to the (two) higher-order levels of this model,
the within- and between-study variability in effect sizes
(i.e., the effect size heterogeneity) is modeled, and thus the
within-study correlation in the underlying true effects is ac-
counted for. As a result, this three-level model distributes
the total variance in effect sizes across three levels: the
sampling variance of the individual effect sizes at level 1,
the within-study variance in effect sizes at level 2, and the
between-study variance in effect sizes at level 3. The varia-
tion in effect sizes at level 1 of thismodel (the sampling vari-
ance) is not estimated in the analysis, but approximated
using statistical theory and by relying on pooled statistics,
which is often the only available information for the meta-
analyst. The three-level structure is a rather straightfor-
ward, but powerful way to model dependency in effect
size data that enables the extraction of multiple effect sizes
from individual studies that meet the inclusion criteria of
a meta-analysis.

Van denNoortgate and Onghena (2003) showed that ap-
plying the multilevel approach to meta-analysis is as effec-
tive and accurate in estimating the model coefficients as
more traditional random effects techniques. A particularly
strong advantage of a multilevel meta-analytic model is its
flexibility (Van den Noortgate et al., 2013, 2015). Multiple
predictors can easily be added as covariates to the model
in attempts to explain within- and/or between-study vari-
ance in effect sizes. Moreover, the multilevel model can
easily be extended with additional random effects to fur-
ther model dependency of effect sizes within and between
studies (Fernández-Castilla et al., 2020). However, the ques-
tion arises how the three-level meta-analytic model deals
with effect size and sampling error dependency in mul-
tivariate effect size data. The three-level meta-analytic
model does so by assigning a random effect to both the out-
comes at level 2 and the studies at level 3 of the model.
As such, the effect size dependency is explicitly modeled,
but the dependency in effect size sampling error is not.
This seems to be at odds with the multivariate model to
meta-analysis prescribing that both effect size dependency
and sampling error dependency must be modeled when-
ever the same or partly the same participants contribute to
multiple effect sizes in a primary study. Van den Noortgate
et al. (2013) who elaborately describe the three-level meta-
analyticmodel do consider both effect size dependency and
standard error dependency, but state that the latter is ac-
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counted for in the three-level model by overestimating the
study-level variancewhich subsequently “stands in” for the
correlation in standard errors. Put differently, the random
effects of the three-levelmodel allow the standard error de-
pendency to “subsume” into the correlation of the underly-
ing true effects through the specification of the model’s hi-
erarchical structure. As a result, the estimates of the mean
effect sizes and their standard errors that are produced
in the analyses are appropriate (Van den Noortgate et al.,
2013).

Comparing the Multivariate Meta-Analysis to the Three-
Level Meta-Analysis

The multivariate and multilevel meta-analytic models are
mathematically closely related. Consequently, they share
similarities, yet there are notable differences (see Cheung,
2015, particularly Section 6.4). The multivariate meta-
analytic model has three key features: 1) it allows for dif-
ferences in population means across outcomes, 2) the ob-
served effect sizes are conditionally dependent, and 3) both
the degree of variability in true effect sizes and the covari-
ance between true effect sizes can vary (Cheung, 2015, p.
195). The three-level meta-analytic model can be conceptu-
alized as a special case of the multivariate meta-analytic
model in which three constraints are modeled (Cheung,
2015): 1) the population effect sizes are equal and, there-
fore, exchangeable within a cluster, 2) the observed effect
sizes are conditionally independent of each other within
a cluster, and 3) the variances of the true effect sizes are
composed by the level-2 and level-3 variances, while the
covariances of the true effect sizes equal the level-3 vari-
ance. When certain assumptions are applied to the ef-
fect size data, a multivariate model can be approximated
with a three-level model. Specifically, these assumptions
involve an equal level of heterogeneity and covariance for
the true effect sizes, and an equal level of conditional co-
variance for the observed effect sizes (Cheung, 2015). Al-
though some of these assumptionsmay bewrong, there are
indications that the three-level approach to meta-analysis
works reasonably well with multivariate effect size data.
Simulation studies performed by Van den Noortgate et al.
(2013) illustrate that multilevel meta-analytic models can
indeed account for all dependency in multivariate effect
size data including effect size and standard error depen-
dency. Moeyaert et al. (2017) underline this finding with
results from their simulation study and conclude that mul-
tilevel meta-analytic models validly and efficiently account
for within-study effect size dependency, and that (explic-
itly) modeling correlations between standard errors of ef-
fect sizes is not needed. According to these studies, apply-
ing a three-level structure when analyzing multivariate ef-
fect size data is sufficient to deal with both effect size de-

pendency and sampling error dependency.
However, the simulation studies of Van den Noortgate

et al. (2013) and Moeyaert et al. (2017) have been reflected
upon by others, for instance because only bivariate meta-
analytic models without covariates were simulated while
in most meta-analyses a substantial number of variables
are tested asmoderator (Viechtbauer, 2017). Moreover, the
assumption that heterogeneity in effect sizes is the same for
all outcomes synthesized in a meta-analysis is an assump-
tion that can be difficult to hold (Viechtbauer, 2020). Vi-
olating this assumption may imply that confidence inter-
vals around estimates for more heterogeneous outcomes
are too narrow (due to an underestimated standard error),
whereas too wide confidence intervals may be produced
around estimates for less heterogeneous outcomes (due
to an overestimated standard error; Viechtbauer, 2017).
It has therefore been argued that whenever the same or
partly the same participants contribute to multiple effect
sizes, a multivariate meta-analytic model is to be preferred
so that both effect size dependency and standard error
dependency are explicitly modeled. Further, three-level
meta-analytic models incorrectly assume that within-study
correlations between outcomes and thus sampling covari-
ances of (within-study) effect sizes are zero (Fernández-
Castilla et al., 2021; Van den Noortgate et al., 2013, 2015).
Although simulation studies have revealed that three-level
models are robust to this misspecification of the correla-
tion structure (Moeyaert et al., 2017; Van den Noortgate
et al., 2013, 2015), there are advocates of the multivariate
meta-analytic method suggesting that the multilevel model
may produce invalid estimates of model coefficients when-
ever the same or partly the same participants contribute to
multiple outcomes in studies (e.g., Viechtbauer, 2017; Yang
et al., 2023). They argue that explicitly modeling both ef-
fect size dependency and sampling error dependency by
applying a multivariate meta-analytic model yields more
appropriate estimates of model coefficients than a multi-
level meta-analytic model.

Constructing a Variance-Covariance Matrix in Multi-
variate Meta-Analysis

Given the multivariate method for meta-analysis, how can
a meta-analyst explicitly model both effect size and stan-
dard error dependency? The answer lies in constructing
a “variance-covariance matrix” (or in short “covariance
matrix”) that forms the basis for many multivariate tech-
niques and contains information that is used in estimat-
ing the model coefficients and their error terms. Basically,
this matrix is a squared table with the same set of vari-
ables in the table’s rows and columns. The numbers on the
table’s diagonal that goes from the top-left to the bottom-
right represent the variances of the variables, whereas all

The Quantitative Methods for Psychology 42

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.20.1.p001


¦ 2024 Vol. 20 no. 1

off-diagonal numbers represent the covariances of all pair-
wise combinations of the variables. The sampling variance
refers to the variation in individual variables, whereas a co-
variance is an unstandardized correlation representing the
linear association between two variables and is a measure
of how change in one variable is associated with change in
another variable. The covariance between the same two
variables equals a variable’s variance, and therefore the
variances are captured by the diagonal elements of the ta-
ble. In multivariate meta-analysis, a variance-covariance
matrix captures the sampling variances of (within-study)
outcomes or observed effect sizes in its diagonal elements
and the covariance between all pairwise combinations of
two outcomes or observed effect sizes in its off-diagonal
elements. So, this matrix indicates how (within-study)
outcomes vary and covary, and thus provide information
about dependency in outcomes. This matrix can be fed into
the meta-analytic model resulting in a multivariate meta-
analytic model that accounts for effect size dependency
through the specified random effects and for standard er-
ror dependency through the information in the variance-
covariance matrix.

Unfortunately, constructing a variance-covariance ma-
trix can be difficult. Particularly computing the covari-
ances between the within-study outcomes or observed ef-
fect sizes is challenging, as the correlations that are re-
quired for those computations are rarely reported by study
authors (e.g., Fernández-Castilla et al., 2020). If, for in-
stance, a primary study reports multiple effect sizes be-
cause multiple outcomes were examined in a sample to
measure one underlying construct, the correlation be-
tween those outcomes is required to calculate the covari-
ance between the effect sizes for these outcomes. Conse-
quently, not knowing the within-study correlation poses
a problem for modeling standard error dependency in a
multivariate meta-analytic model. In contrast, Van den
Noortgate et al. (2013) state that the multilevel approach
to meta-analysis does not require exact knowledge of the
sampling covariances between effect sizes, as the between-
study variance acts as a “stand in” for the sampling co-
variances. Thismakesmultilevel meta-analysis convenient
and appealing, as the lack of information on the covari-
ances between effect sizes does not seem to be problem-
atic according to simulation studies (Moeyaert et al., 2017;
Van den Noortgate et al., 2013, 2015). In fact, lacking in-
formation on covariances is exactly the reason why multi-
variate meta-analyses are only rarely performed. Besides
adopting a multilevel meta-analytic approach as an alter-
native method for handling multivariate effect size data,
other techniques are available including the construction
of an approximated variance-covariance matrix or apply-
ing a cluster-robust inference method to a meta-analytic

model (Hedges et al., 2010; Pustejovsky & Tipton, 2022; Tip-
ton, 2015).

Approximating a Variance-Covariance Matrix

When the true variance-covariance matrix cannot be com-
puted because information on covariances is not available,
ameta-analystmay choose to approximate themultivariate
meta-analytic method by constructing an “approximated”
or “working” variance-covariance matrix. In such a ma-
trix the effect size covariances are calculated using an in-
formed estimate (or “guestimate”) of one “common” cor-
relation between the observed effect sizes. The underly-
ing assumption of this matrix is a single or one common
correlation between all (pairs of) effect sizes that were ob-
tained from the same study, and which is the same across
all studies. Pustejovsky and Pustejovsky and Tipton (2022,
p. 429) refer to this premise as the “constant sampling
correlation” assumption. For instance, a meta-analyst that
combines both observational and self-report measures of
children’s eating behavior in one meta-analysis to study
the effects of school-basedweight interventionsmay derive
from previous empirical research that the correlation be-
tween observations and self-reports may be as high as .47
(Merson et al., 2016). This correlation estimate can then be
used to construct an approximation of the true variance-
covariance matrix. However, when the between-outcomes
correlation is estimated as .47, it is implicitly assumed that
this correlation holds for the covariances of all pairs of out-
comes within and across all studies that are included in
the meta-analysis. This may not be realistic and thus diffi-
cult to justify, but a variance-covariance matrix can also be
constructed using more than one correlation. For instance,
when primary studies partly report on within-study out-
come correlations, the variance-covariance matrix can be
constructed using these reported correlations in addition
to an estimated correlation for unreported associations be-
tween outcomes. Thematrix is then no longer based on the
assumption of “constant sampling correlation” but on the
assumption of what Pustejovsky and Tipton (2022, p. 430)
refer to as the “partially empirical correlations” assump-
tion.

As deciding on the strength of the association(s) be-
tween within-study outcomes is challenging, it can be wise
to conduct sensitivity analyses with variance-covariance
matrices that are based ondifferent estimates of thewithin-
study outcome correlation(s) (see, for instance, Hutchinson
et al., 2022; Li et al., 2022; Oliveira et al., 2022). Building on
our earlier example, the meta-analyst could compute addi-
tional matrices based on lower (e.g., ρ = .20) and higher
(e.g., ρ = .80) constant sampling correlations than the cor-
relation (ρ = .47) that was initially used in constructing the
variance-covariance matrix. Next, by performing a sensi-
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tivity analysis for each of the additionalmatrices, themeta-
analyst can determine to what extent the results are sensi-
tive to alternative decisions on the strength of the corre-
lation(s) between within-study outcomes. Ideally, the ini-
tially performed analyses and the sensitivity analyses pro-
duce similar results, so that the conclusion is that results
hold across different estimates of the within-study correla-
tion(s).

Applying aCluster-Robust Variance EstimationMethod

Another alternativemethod to handle dependency in effect
size data is the Robust Variance Estimation (RVE) method
(Hedges et al., 2010; Tipton & Pustejovsky, 2015). Cluster-
robust variance estimation methods – also referred to as
“sandwich estimators” because of the structure of the un-
derlying formula components – are becoming increasingly
popular inferential methods that can be used inmaking in-
ferences from regression models and do not require pre-
cise knowledge of the covariances between (within-study)
outcomes and the distribution of standard errors. To put
it very simply, RVE tries to “polish up” the standard er-
rors of fixed effect estimates. In this method, the vari-
ance components of the model are viewed as auxiliary to
the analysis, rather than being central parameters for in-
ference or description (Pustejovsky & Tipton, 2022). For
multivariate effect size data, Fisher and Tipton (2015) state
that RVE produces valid standard errors, (mean) effect size
estimates, confidence intervals, and significance tests in
meta-regression without the need to model the exact na-
ture of the dependency in effect size data. Although RVE
does not require a specification of the covariance structure,
the performance of the RVE method improves when a so-
called “working model” is specified that describes the de-
pendency in the effect size data and serves as input for the
RVE method (Hedges et al., 2010). Pustejovsky and Tipton
(2022) provided a decision tree that meta-analysts can use
to select a suitable working model given the characteris-
tics of the effect size dataset that is to be analyzed. These
authors describe several working models including the hi-
erarchical effects (HE) model, the correlated effects (CE)
model, and the correlated and hierarchical effects (CHE)
model thatwebriefly discuss here (see pp. 427-432 in Puste-
jovsky & Tipton, 2022, for their decision tree and a full list
of all working models they describe).

In short, the HE model addresses dependency in ef-
fect size data that is caused by non-overlapping samples
which are nested in a higher-level cluster. For instance,
when research groups have each produced multiple stud-
ies that are included in a meta-analysis, then studies are
nested within research groups. This nested structure is ac-
counted for in the HE model which models within-cluster
and between-cluster variation in the underlying true ef-

fect sizes and assumes dependency in true effects while
considering sampling errors of the observed effect sizes as
independent. A different model is the CE model that as-
sumes sampling errors of effect sizes to be dependent be-
cause (partly) the same participants contribute to multi-
ple effect sizes (i.e., effect sizes are based on overlapping
samples). However, it does not assume within-study vari-
ation in the underlying true effect sizes. Finally, the CHE
model combines characteristics of the HE and CE models
and allows forwithin-study andbetween-study variation in
the underlying true effect sizes as well as correlated sam-
pling errors of the observed effect sizes. By first specify-
ing a working model that fits the structure of the effect size
dataset at hand and applying RVE for obtaining corrected
standard errors and hypothesis tests thereafter, a meta-
analyst benefits from the efficiency of aworkingmodel cap-
turing the effect size dependency while retaining the ro-
bustness to potential model misspecification (Hong et al.,
2018). Put simply, combining a working model with the
RVE technique may address the dependency in effect size
datamore accurately, which presumably leads tomore pre-
cise and accurate model coefficients than using RVE alone
(Tipton, 2015; Tipton & Pustejovsky, 2015). So, RVE should
not be regarded as an alternative technique to a multivari-
ate ormultilevelmeta-analyticmodel, but as a complemen-
tary technique to a working model that provides a safe-
guard against model misspecification (Pustejovsky & Tip-
ton, 2022; Tipton & Pustejovsky, 2015).

The originally developed RVEmethod requires a rather
large number of studies in a meta-analysis to obtain ac-
curate results (Hedges et al., 2010). Hedges et al. (2010)
roughly suggested that at least 40 studies need to be syn-
thesized for valid results, as synthesizing less studies may
lead to underestimated standard errors and inflated type-
1 error rates (see also Tipton, 2015). However, depending
on the research questions that need to be addressed, it is
often not feasible to identify and retrieve so many stud-
ies. Therefore, small-sample corrections have been devel-
oped for RVE that are based on applying the Satterthwaite
correction to the degrees of freedom of model coefficient
tests, so that the risk of a type-1 error rate in small sam-
ple meta-analyses decreases (Tipton, 2015; Tipton & Puste-
jovsky, 2015). However, it was found that these methods
may still suffer from inflated type-1 error rates or from
below-nominal type-1 error rates (Joshi et al., 2022; Tipton
& Pustejovsky, 2015);. For specifically multiple-comparison
tests, Tipton andPustejovsky (2015) showed that small sam-
ple corrections (and the “HTZ” test in particular) may have
low statistical power. In other words, the small sample cor-
rectionsmay not be trustworthy and overly conservative in
multiple-comparison tests (Joshi et al., 2022).

In their attempt to overcome these problems, Joshi et al.
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(2022) developed an alternative method for correcting RVE
when the number of studies is limited. Their technique is
based on cluster wild bootstrapping (CWB), which involves
re-sampling of entire clusters from the original effect size
data (Cameron et al., 2008). This technique does not re-
quire a large number of clusters nor that clusters have the
same size. Also, effect size sampling errors do not need to
be independent and identically distributed (Cameron et al.,
2008; MacKinnon, 2009). The simulation studies that Joshi
et al. (2022) performed reveal that CWB adequately con-
trols for the type-1 error rate and that CWB hasmore statis-
tical power compared to other techniques, particularly in
multiple-comparison tests. Based on their results, Joshi et
al. recommend using CWB for multiple-comparison tests
in meta-analyses conducted with RVE although they also
stress that more simulation studies are needed to further
examine the performance of this technique.

Working Example in R

We have now briefly covered how dependency in effect
size data is mainly dealt with in multilevel versus multi-
variate meta-analytic models, and described what role an
approximated variance-covariance matrix and the appli-
cation of RVE (with small sample adjustment) to a work-
ing model can fulfill in estimating coefficients in a meta-
analytic model. In our tutorial (Assink & Wibbelink, 2016),
we have illustrated a three-level meta-analysis of effect
sizes that express the difference in recidivism between
delinquent juveniles with versus without a mental health
disorder. We used a subset of the dataset synthesized in the
original study ofWibbelink et al. (2017) that comprised 100
effect sizes extracted from 17 individual studies (between
1 and 22 effect sizes were extracted per study). The effect
sizes were multivariate as the same samples contributed
to multiple effect size estimates, due to for example differ-
ent sources of information (e.g., official records and self-
reports) and different types of outcomes (e.g., rearrests and
reincarcerations). The standardized mean difference (Co-
hen’s d) was used as common effect size with positive d
values indicating more recidivism in juveniles with a men-
tal health disorder compared to juveniles without a mental
health disorder. The correlations between outcomes were
not reported in the individual studies and therefore apply-
ing a multivariate meta-analysis was not feasible. Conse-
quently, an alternative method was needed to include all
relevant information without ignoring the dependency be-
tween effect sizes. In our tutorial (Assink & Wibbelink,
2016) we demonstrated how the effect size dataset can be
analyzed in a three-level meta-analysis. The questions that
now rise are (1) how the alternative methods described
in this paper can be applied to the dataset we analyzed
in our tutorial, including the multivariate meta-analytic

approach with an approximated variance-covariance ma-
trix and the RVE method in combination with a working
model, and (2) to what extent the results differ between the
three-level meta-analysis, the multivariate meta-analytic
approach with an approximated variance-covariance ma-
trix, and the RVE method applied to two working models
(i.e., the model based on themultivariate approach and the
three-level meta-analytic model).

Results of Alternative Approaches

Wolfgang Viechtbauer (Viechtbauer, 2021) showed in the
R statistical environment using his metafor package how
our effect size dataset -– which is available online as the ap-
pendix of Assink and Wibbelink (2016) — can be analyzed
with the multivariate approach using an approximated
variance-covariance matrix, and how the RVE method can
be applied. Below, we present R syntax and output to guide
readers in running the analyses and interpreting the re-
sults. For brevity, we do not elaborate on important pre-
liminary steps in fitting a meta-analytic model (e.g., outlier
detection and testing assumptions), but refer the reader to
for instance Hox et al. (2017) and Lipsey andWilson (2001)
and references therein. After installing and loading the
metafor package, the dataset needs to be imported into
theR environment (see Listing 1). Next, by running the syn-
tax in Listing 2, the overall association between juveniles
with a mental health disorder and recidivism is estimated
based on a multivariate meta-analytic approach with an
approximated variance-covariance matrix. We presume
a “common” correlation of .60 between all pairs of effect
sizes within and across all included primary studies. The
vcalc function in Listing 2 is part of the metafor pack-
age and enables the construction or approximation of the
variance-covariance matrix of the sampling errors of de-
pendent effect sizes. The argument v refers to the name
of the variable that contains all sampling variances of the
observed effect sizes. The cluster= argument specifies
the clustering variable (i.e., studyID) and theobs argument
specifies the variable that uniquely identifies the observed
effect sizes (i.e., effectsizeID). In addition, data=dataset
is the argument that specifies what object contains the
dataset. Finally, the rho argument indicates the correla-
tion between the observed effect sizes, which, in this in-
stance, we assume to be .60.

The rma.mv function in Listing 2 makes it possible to
run a multivariate or multilevel meta-analytic model, in
which the random= argument specifies the type of pa-
rameterization. Similar to our tutorial (Assink & Wibbe-
link, 2016), we fitted the model with a multilevel -–
and specifically a three-level – parameterization. How-
ever, a multivariate model parameterization would not
make any difference as both parameterizations produce
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identical results whenever the estimated correlation be-
tween underlying true effects (ρ) is positive (Viechtbauer,
2022). The vcmatrix argument contains the approxi-
mated variance-covariance matrix that is estimated with
the vcalc function. Running the syntax in Listing 2 pro-
duces the output as shown inOutput 1. For a detailed expla-
nation of the rma.mv function in Listing 2 and the output
in Output 1, the reader is referred to Assink and Wibbe-
link (2016). Based on the output, we can conclude that d
equals 0.368 (p < .001) in the multivariate meta-analytic
approach with an approximated variance-covariance ma-
trix based on a “common” correlation of ρ = .60.

Next, two sensitivity analyses are conducted by chang-
ing the assumed correlation between the observed effect
sizes from ρ = .60 into ρ = .40 and ρ = .80. See the syntax
in Listing 3 and output in Output 2. We can conclude that
d equals 0.385 (p < .001) and 0.354 (p < .001) in the sensi-
tivity analyses when assuming a “common” correlation of
ρ = .40 and ρ = .80, respectively.

We now proceed by demonstrating the RVE method to
handle dependency in effect size data. As RVE should not
be regarded as a substitute for a multivariate or multilevel
meta-analytic model, but rather as a complementary tech-
nique to a working model, we fitted both the three-level
meta-analyticmodel and themodel based on themultivari-
ate approach with an approximated variance-covariance
matrix in combination with RVE. First, the clubSandwich
package has to be installed and loaded into the R environ-
ment; see the syntax in Listing 4. Next, the overall effect
is estimated using the RVE method with two working mod-
els: the model based on the multivariate meta-analytic ap-
proach with an approximated variance-covariance matrix
of ρ = .60 (see Listing 5) and the three-level meta-analytic
model (see Listing 6). The robust function in Listings
5 and 6 enables cluster-robust tests and retrieves cluster-
robust confidence intervals of the model coefficients of the
specified object, which in this case are the objects for the
model based on the multivariate approach (“overallmulti-
variate”) and the three-level model (“overallmultilevel”).

Tests of individual coefficients and confidence inter-
vals in the robust function are by default based on
a t-distribution, whereas the omnibus test uses an F -
distribution (Viechtbauer, 2023b, p. 294). It is therefore not
necessary to add the tdist=TRUE argument to the syntax
that specifies the working model. Note that this argument
should be added to the syntax when RVE is not applied
to a working model. Without this argument, test statis-
tics of individual model coefficients are based on a stan-
dard normal distribution, and the omnibus test is based
on a chi-square distribution which both do not control
for the type-1 error rate adequately (Van den Noortgate
et al., 2015). In contrast, adding the tdist=TRUE argu-

ment invokes the t-distribution for test statistics of indi-
vidual coefficients and an F-distribution for the omnibus
test, which slightly mimics the Knapp and Hartung (2003)
method. Further, the dfs="contain" argument may
be added to the syntax, resulting in better approximations
of the degrees of freedoms of the t- and F -distributions
(Viechtbauer, 2023b, pp. 270, 166). The cluster= ar-
gument in the robust function specifies the clustering
variable (i.e., studyID) to construct the sandwich estima-
tor. The clubSandwich=TRUE argument implies that
the clubSandwich package is invoked to perform cluster-
robust tests and to retrieve cluster-robust confidence inter-
vals. With this argument, the recommended CR2 estima-
tor is applied that estimates the variance-covariance ma-
trix using the bias-reduced linearization adjustment (Bell &
McCaffry, 2002; Tipton, 2015; Tipton & Pustejovsky, 2015).
Moreover, the degrees of freedom of the t-tests are then
estimated with a Satterthwaite correction and the F -test
is based on the approximate Hotelling’s T 2 distribution
(Pustejovsky, 2023), which are meant to improve the esti-
mation of coefficients.

Running the syntax in Listing 5 and Listing 6 will pro-
duce the outputs as shown in Outputs 3 and 4, respectively.
As can be seen in those outputs, the estimates of the overall
effect remained unchanged, but the RVEmethod applies an
adjustment to the tests and confidence intervals resulting
in different degrees of freedom, larger standard errors and
p-values, wider confidence intervals, and smaller t-values.

More examples are available online (Viechtbauer,
2021), including instructions to construct a variance-
covariance matrix with two “common” correlations in-
stead of just one, so that associations betweenwithin-study
outcomes and thus effect size covariancesmay be captured
more realistically. Specifically, Viechtbauer shows how a
matrix can be build using ρ = .70 for effect sizes that
refer to the same type of delinquency and ρ = .50 for
effect sizes that refer to different types of delinquency.
Note that in the multivariate meta-analytic approach, vari-
ance components and potential moderating variables can
be tested in the same way as we described in our tutorial
(Assink&Wibbelink, 2016), and this is illustrated by Viecht-
bauer (2021). Readers interested in applying RVEwith CWB
as small sample adjustment to a model specified with the
metafor package can also be referred to example R code
online (see Joshi et al., 2023). In our working example,
we did not apply CWB as it is especially recommended for
multiple-contrast hypothesis tests (Joshi et al., 2022), which
was not the focus in our example.

Comparing Results of the Different Approaches

Not surprisingly, when the same effect size data are synthe-
sized using different analytic strategies, the results will be
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Listing 1 Importing the Dataset into the R Environment.

# Importing data saved in a comma separated values (CSV) file;
# The data file to be imported was named "dataset.csv";
# All data saved in the file "dataset.csv" is read by invoking
# the read.csv function and assigned to a newly created object
# "dataset" by the assignment operator "<-".
dataset <- read.csv("dataset.csv")

Listing 2 Estimating the Overall Effect Based on aMultivariate Meta-Analytic Approachwith an Approximated Variance-
Covariance Matrix of ρ = .60.

# Calculating the approximated variance-covariance matrix by
# assuming a correlation between effect sizes within studies of rho=.60.
vcmatrix <- vcalc(v, cluster=studyID, obs=effectsizeID, data=dataset, rho=0.6)
# Estimating the overall effect based on the multivariate
# approach with an approximated variance-covariance matrix.
overallmultivariate <- rma.mv(y, vcmatrix, random=list(~ 1 | effectsizeID, ~ 1 |

studyID), tdist=TRUE, data=dataset)
# Request a print of the results stored in the object
# "overallmultivariate" in three digits.
summary(overallmultivariate, digits=3)

different. When our example dataset (Assink &Wibbelink,
2016) is analyzed using the different methods that we have
described, we see that the overall effect (d) equals 0.427
in the three-level model (p < .001, SE = 0.118, 95% CI
[0.195; 0.659]), that d equals 0.368 in themodel based on the
multivariate approach with one assumed “common” cor-
relation of ρ = .60 for within-study outcomes (p < .001,
SE = 0.097, 95% CI [0.176; 0.559]), that d equals 0.385
(p < .001, SE = 0.102, 95% CI [0.182; 0.587]) and 0.354
(p < .001, SE = 0.093, 95% CI [0.170; 0.538]) in the sensi-
tivity analyses for the multivariate approach using a “com-
mon” correlation of ρ = .40 and ρ = .60, respectively,
and finally, that d equals 0.427 (p = .003, SE = 0.119,
95% CI [0.175; 0.679]) and 0.368 (p = .002, SE = 0.097,
95% CI [0.160; 0.575]) when RVE with a small sample ad-
justment is applied to both working models (i.e., the three-
level model and the model based on the multivariate ap-
proach with a “common” correlation of ρ = .60, respec-
tively). In this example, we do not regard the differences in
estimates of the overall effect size and its precision mean-
ingful for clinical practice. However, this may be different
in other meta-analyses where applying alternative model-
ing techniques may lead to different conclusions. Further,
and not reported here for brevity, different modeling tech-
niques may also lead to variations in results of modera-
tor tests and variance component tests. This implies that
for instance clinical professionals or policy makers can be
informed quite differently depending on the choices of a

meta-analyst regarding the modeling strategy.

Discussion

We conclude this research note with a relevant question:
Which modeling strategy to synthesize dependent effect
size data is optimal? Formulating a satisfying and solid an-
swer to this question is however difficult and beyond the
scope of this paper. For multivariate effect size data the
multilevel method makes assumptions that may not hold
in some contexts, such as the assumption of independency
of standard errors and the assumption that heterogeneity
in effect sizes is the same for all outcomes in the synthesis.
Despite these assumptions, the available simulation stud-
ies (e.g., Moeyaert et al., 2017; Van den Noortgate et al.,
2015, 2013) reveal that the multilevel method is robust to
misspecification of the correlation structure. However, it
should be acknowledged that these studies are limited in
both the complexity of the testedmodels and the conditions
in which the models were tested.

On the other hand, the assumptions inherent in amulti-
variate meta-analysis seem more appropriate in a synthe-
sis of multivariate effect size data, as both the effect size
dependency and standard error dependency are explicitly
modeled. While a three-level meta-analysis can account
for dependencies in effect sizes within and between stud-
ies, it might not address the standard error dependency as
comprehensively as the multivariate meta-analysis. But as
discussed in this paper, a major practical drawback to the
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Output 1 Output of Listing 2.

Multivariate Meta-Analysis Model (k = 100; method: REML)
logLik Deviance AIC BIC AICc
-72.765 145.530 151.530 159.316 151.783

Variance Components:
estim sqrt nlvls fixed factor

sigma^2.1 0.155 0.393 100 no effectsizeID
sigma^2.2 0.081 0.284 17 no studyID

Test for Heterogeneity:
Q(df = 99) = 745.161, p-val < .001

Model Results:
estimate se tval df pval ci.lb ci.ub
0.368 0.097 3.810 99 <.001 0.176 0.559 ***
---
Signif. codes: 0 ‘’*** 0.001 ‘’** 0.01 ‘’* 0.05 ‘’. 0.1 ‘ ’ 1

Listing 3 Sensitivity Analyses with Approximated Variance-Covariance Matrices with ρ = .40 and ρ = .80.

# Sensitivity analyses by calculating approximated variance-
# covariance matrices with correlations between effect sizes
# within studies of rho=.40 and rho=.80.
vcmatrix0.4 <- vcalc(v, cluster=studyID, obs=effectsizeID, data=dataset, rho=0.4)
vcmatrix0.8 <- vcalc(v, cluster=studyID, obs=effectsizeID, data=dataset, rho=0.8)
# Estimating the overall effects based on the multivariate
# approach with approximated variance-covariance matrices of
# rho=.40 and rho=.80.
overallmultivariate0.4 <- rma.mv(y, vcmatrix0.4, random=list(~ 1 | effectsizeID, ~

1 | studyID), tdist=TRUE, data=dataset)
overallmultivariate0.8 <- rma.mv(y, vcmatrix0.8, random=list(~ 1 | effectsizeID, ~

1 | studyID), tdist=TRUE, data=dataset)
# Request a print of the results stored in the objects
# "overallmultivariate0.4" and "overallmultivariate0.8" in three digits.
summary(overallmultivariate0.4, digits=3)
summary(overallmultivariate0.8, digits=3)

Listing 4 Installing and Loading the clubSandwich Package.

# Installing and loading the clubSandwich package.
install.packages("clubSandwich")
library(clubSandwich)

Listing 5 Estimating the Overall Effect Using a Multivariate Working Model with an Approximated Variance-Covariance
Matrix Based on rho=0.6 and the RVE Method.

# Applying the RVE method to a multivariate working model with an
# approximated variance-covariance matrix of rho=0.60.
overallmultivariateRVE <- robust(overallmultivariate, cluster=studyID,

clubSandwich=TRUE)
# Request a print of the results stored in the object
# "overallmultivariateRVE" in three digits.
summary(overallmultivariateRVE, digits=3)
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Output 2 Output of Listing 3.

Multivariate Meta-Analysis Model (k = 100; method: REML)
logLik Deviance AIC BIC AICc
-72.797 145.593 151.593 159.379 151.846

Variance Components:
estim sqrt nlvls fixed factor

sigma^2.1 0.138 0.371 100 no effectsizeID
sigma^2.2 0.108 0.329 17 no studyID

Test for Heterogeneity:
Q(df = 99) = 550.476, p-val < .001

Model Results:
estimate se tval df pval ci.lb ci.ub
0.385 0.102 3.768 99 <.001 0.182 0.587 ***
---
Signif. codes: 0 ‘’*** 0.001 ‘’** 0.01 ‘’* 0.05 ‘’. 0.1 ‘ ’ 1

Multivariate Meta-Analysis Model (k = 100; method: REML)
logLik Deviance AIC BIC AICc
-73.021 146.042 152.042 159.827 152.294

Variance Components:
estim sqrt nlvls fixed factor

sigma^2.1 0.175 0.418 100 no effectsizeID
sigma^2.2 0.060 0.245 17 no studyID

Test for Heterogeneity:
Q(df = 99) = 1380.140, p-val < .001

Model Results:
estimate se tval df pval ci.lb ci.ub
0.354 0.093 3.819 99 <.001 0.170 0.538 ***
---
Signif. codes: 0 ‘’*** 0.001 ‘’** 0.01 ‘’* 0.05 ‘’. 0.1 ‘ ’ 1

multivariate meta-analysis is that the within-study corre-
lations required for constructing the variance-covariance
matrix are often not reported in primary studies and thus
unknown. To deal with this problem, an approximated
variance-covariance matrix using an (informed) estimate
of the correlation between effect sizes can be constructed.
However, the chosen correlationmay deviate substantially
from the true correlation between effect sizes. Alterna-
tively, the RVE method can be applied to a working model
that guards against misspecification of that model. A meta-
analyst may perform sensitivity analyses to deal with the
problem of approximating a variance-covariance matrix,
but when results differ across these analyses, drawing
valid conclusions becomes difficult.

From our position, we cannot state which modeling
approach is better than the other, as the choice of mod-
eling should be based on the particular scope and aims
of a meta-analysis, the structure of the effect size data at
hand, the knowledge one has of the correlation structure,
and what can be assumed about the effect size distribu-
tions for the different (within-study) outcomes that are to

be synthesized. We realize that not providing a straightfor-
ward answer to the question above may not be satisfying
for pragmatic researchers searching for the “right” model-
ing approach. However, Viechtbauer (2023b, pp. 166-167)
and Pustejovsky and Tipton (2022) have formulated a “gen-
eral workflow” and a decision-tree for selecting a working
model, respectively, that researchers may find useful in de-
ciding on their modeling strategy.

In the current paper and our prior tutorial (Assink &
Wibbelink, 2016), we discussed a rather straightforward
dependency structure of the effect size data (i.e., effect sizes
nested within studies). However, as Fernández-Castilla
et al. (2020) have pointed out, more complex and sophis-
ticated models might be more appropriate to synthesize
effect sizes depending on the structure of the effect size
dataset at hand. For instance, participants may be nested
within outcomes that may be nested within studies that
may be nested in research groups. In this example, syn-
thesizing the effect sizes in a four-level rather than a three-
level model may better capture the effect size dependency
and may therefore be the preferred approach. A differ-
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Listing 6 Estimating the Overall Effect Using a Three-Level Working Model and the RVE method.

# Building a three-level meta-analytic model.
overallmultilevel <- rma.mv(y, v, random=list(~ 1 | effectsizeID, ~ 1 | studyID),

data=dataset)
# Applying the RVE method to the three-level working model.
overallmultilevelRVE <- robust(overallmultilevel, cluster=studyID,

clubSandwich=TRUE)
# Request a print of the results stored in the object
# "overallmultilevelRVE" in three digits.
summary(overallmultilevelRVE, digits=3)

Output 3 Output of Listing 5.

Multivariate Meta-Analysis Model (k = 100; method: REML)
logLik Deviance AIC BIC AICc
-72.765 145.530 151.530 159.316 151.783

Variance Components:
estim sqrt nlvls fixed factor

sigma^2.1 0.155 0.393 100 no effectsizeID
sigma^2.2 0.081 0.284 17 no studyID

Test for Heterogeneity:
Q(df = 99) = 745.161, p-val < .001

Number of estimates: 100
Number of clusters: 17
Estimates per cluster: 1-22 (mean: 5.88, median: 5)

Model Results:
estimate ¹se ¹tval ¹df ¹pval ¹ci.lb ¹ci.ub
0.368 0.097 3.792 14.53 0.002 0.160 0.575 **
---
Signif. codes: 0 ‘’*** 0.001 ‘’** 0.01 ‘’* 0.05 ‘’. 0.1 ‘ ’ 1

1) results based on cluster-robust inference (var-cov estimator: CR2, approx t-test and confidence
interval, df: Satterthwaite approx)

ent example that may require a more complex approach
to model dependency in effect size data is when multiple
instruments are used across studies to assess a certain out-
come, in addition to primary studies reporting on multi-
ple effect sizes (Fernández-Castilla et al., 2019). In this sce-
nario, effect sizes are nestedwithin studies, but at the same
time effect sizes are assessed with a specific instrument
that may have been used across studies. The type of in-
strument now serves as a “crossed random effect” that is
sometimes referred to as a “cross-classified random effect”.
In this cross-classified model, effect sizes can vary because
of sampling variability, within-study variability, and both
between-study and between-instrument variability. We re-
fer the reader to thework of Fernández-Castilla et al. (2019)
for a more detailed explanation of cross-classified random
effects.

Further, several modeling recommendations for es-

timating outcome-specific effects in meta-analyses with
dependent effect size data have been formulated by
Fernández-Castilla et al. (2021), and there is one thatwe like
to highlight here. The three-level model that we illustrated
in our tutorial (Assink & Wibbelink, 2016) is often used to
estimate a mean effect size for specific outcomes next to
an overall effect size. For instance, Spruit et al. (2016) syn-
thesized primary studies examining the effects of physical
activity interventions on internalizing behaviors in adoles-
cents using the three-level model. Their aim was to obtain
one overall intervention effect as well as several outcome-
specific effects for types of internalizing behaviors (i.e.,
depression, anxiety, and “other” internalizing problems).
In some of the included studies, multiple effect sizes re-
ferred to the same type of internalizing behavior, for in-
stance because the sample was repeatedly measured over
time or because the same outcome was assessed with dif-
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Output 4 Output of Listing 6.

Multivariate Meta-Analysis Model (k = 100; method: REML)
logLik Deviance AIC BIC AICc
-73.632 147.264 153.264 161.050 153.517

Variance Components:
estim sqrt nlvls fixed factor

sigma^2.1 0.112 0.335 100 no effectsizeID
sigma^2.2 0.188 0.433 17 no studyID

Test for Heterogeneity:
Q(df = 99) = 808.848, p-val < .001

Number of estimates: 100
Number of clusters: 17
Estimates per cluster: 1-22 (mean: 5.88, median: 5)

Model Results:
estimate ¹se ¹tval ¹df ¹pval ¹ci.lb ¹ci.ub
0.427 0.119 3.597 15.45 0.003 0.175 0.679 **
---
Signif. codes: 0 ‘’*** 0.001 ‘’** 0.01 ‘’* 0.05 ‘’. 0.1 ‘ ’ 1

1) results based on cluster-robust inference (var-cov estimator: CR2, approx t-test and confidence
interval, df: Satterthwaite approx)

ferent instruments. In this particular modeling condition,
Fernández-Castilla et al. (2021) found that using the three-
level meta-analytic model for estimating outcome-specific
effects by means of a moderator analysis leads to under-
estimated standard errors. However, they also found that
standard errors are properly estimated when the three-
level model is combined with the RVE technique. Based on
these results, the authors recommend using the three-level
approach with RVE (and the small sample adjustment to
RVE; Tipton, 2015) to obtain robust standard errors and ap-
propriate confidence intervals when researchers are inter-
ested in outcome-specific effects. Meta-analysts may find
this recommendation useful for their work (see Fernández-
Castilla et al., 2021, for more detail).

The study of Fernández-Castilla et al. (2021) is only one
example of the available work on the performance of dif-
ferent modeling approaches to meta-analysis of dependent
outcomes. Other scholars have also compared the perfor-
mance of different techniques for modeling effect size and
sampling error dependency (see, for instance, Fernández-
Castilla et al., 2019; Hedges et al., 2010; Moeyaert et al.,
2017; Park & Beretvas, 2019; Tipton, 2013, 2015; Van den
Noortgate et al., 2013, 2015). Nevertheless, future simu-
lation studies are required to further explore how these
techniques perform in more complex models and under a
broader range of conditions, so that more solid modeling
advice can be offered to meta-analysts.

We conclude with three final notes. First, we highlight
that statisticians and methodologists specialized in meta-
analysis may not use the same terminology and definitions

in their work. For example, in this paper we have re-
ferred to the “multivariate meta-analytic approach with
an approximated variance-covariance matrix” as one of
the alternatives to a three-level meta-analysis. However,
this approach corresponds to what Pustejovsky and Tip-
ton (2022) refer to as the CHE model in which within-study
andbetween-study heterogeneity in true effect sizes aswell
as correlated sampling errors are modeled by constructing
a multilevel meta-analytic model with a common correla-
tion between pairs of effect sizes (p. 429). These differ-
ences in terminology further complicate the already chal-
lenging task of navigating the technical literature ondepen-
dency in effect size data. Second, we stress the importance
of the availability of tutorials, guidelines, and workflows
that support the applied meta-analyst in choosing a meta-
analytical strategy that fits the nature of dependency in an
effect size dataset. Because of the technical nature of liter-
ature on dependency in effect size data and techniques to
handle this dependency, there are notmany sources readily
employable by non-technical researchers who aim to con-
duct a meta-analysis. With our tutorial (Assink & Wibbe-
link, 2016) and the current paper we have tried to pro-
vide a bridge between the technical and often complex lit-
erature and the applied meta-analyst. However, there is
much more to say about modeling dependency in effect
size data than what we have summarized in our prior tu-
torial and the current research note. Great efforts have
also been made by other scholars to support the practical
meta-analyst, for instance by providing tutorials on con-
ductingmeta-analyseswith dependent effect size data (e.g.,
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Lu, 2023; Tanner-Smith et al., 2016) and by refining syntax
and software (e.g., continuous updates of themetafor pack-
age is presented online by Viechtbauer, 2023a). However,
we urge researchers to make the technical literature fur-
ther accessible to interested applied researchers in differ-
ent scientific fields. Finally, we encourage practical meta-
analysts to stay informed on advances in the rapidly evolv-
ing meta-analytic techniques and software.
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Van den Noortgate, W., López-López, J. A., Marı́n-Martı́nez,
F., & Sánchez-Meca, J. (2013). Three-level meta-
analysis of dependent effect sizes. Behavior Research
Methods, 45, 576–594. doi: 10.3758/s13428-012-0261-6.
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