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Methodology for identification, visualization, and
clustering of similar behaviors in dyadic sequences
analyzed through the longitudinal actor-partner
interdependence model with Markov chains
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Abstract The longitudinal actor-partner interdependence model (L-APIM) is frequently used to
study dyadic relationships over time. When one deals with categorical longitudinal data, Markov
chains emerge as a valuable analytical tool. This approach allows for the identification of interaction
patterns in the L-APIM framework through the examination of the transition matrix. In the context
of dyadic sample, investigating the similarity of behaviors between individuals becomes important.
To address this question, visualization and grouping analysis are employed, providing valuable tools
for discerning relationships with behavioral data. We introduce a novel methodological approach
to ascertain such behavioral similarity using the probabilities into the transition matrix. In this
article, we describe the utilization of multidimensional scaling and hierarchical clustering for iden-
tifying analogous behaviors within a dyadic sample. We illustrate the complete methodology using
a simulated dataset. Codes in R language are included for implementation.
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Introduction

The actor-partner interdependence model (APIM) is in-
creasingly used to analyze data from two individuals, such
as partners, friends, and parent and child (Kenny, 1996).
The classic APIM can be used to analyze static behavior,
including the influence of depression on marital satisfac-
tion. When data is collected over several short periods,
such as several successive days, the data reveals changes
in the behavior of each individual over time while consid-
ering the mutual influence of each member of the dyad.
An adaptation of the APIM, called the longitudinal actor-
partner interdependence model (L-APIM), is used to ana-
lyze this data (Estrada et al., 2020). When the data are cat-
egorical, these dyadic sequences can be modeled using ho-
mogeneous Markov chains. When this method is adopted,
the sequences are summarized in countmatrices, which al-
low the probabilities transitionmatrix to be estimated as in
the classic Markov chains setup (Bollenrücher et al., 2023).

L-APIM analysis allows for the identification of various in-
teraction patterns: actor-partner (APM), actor-only (AM),
partner-only (PM), and independence (IM). The APM is the
general case, in which each individual’s responses depend
on that individual’s and their partner’s previous responses.
The AM is characterized by responses hinging solely on
the actor’s previous answers, and the PM is marked by re-
sponses linked exclusively to their partner’s previous an-
swers. In the IM, the responses do no exhibit temporal
dependence. When dyadic sequences are modeled using
Markov chains, a test based on themaximum likelihood ra-
tio is used to identify which interaction pattern each indi-
vidual adopts (Bollenrücher et al., 2023). These different
types of interaction patterns imply different processes in
the dyadic relationship.

Consider the following example: Heterosexual roman-
tic partners are questioned every day for a month about
their sexual desirewith the following questionDid you have
sexual desire yesterday? and they can answer yes or no. Fo-
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cusing on the analysis of the woman’s sequence, the likeli-
hood ratio test is used to identify her interaction pattern.
If the test indicates an APM, it means that actor and part-
ner effects are considered. In other words, her previous
answers and her spouse’s previous answers influence the
sequence of the woman. If the identified type is an AM, the
spouse’s answers have no effect. Respectively, if it is a PM,
the woman answers have no effect. If the pattern of inter-
action is independent, neither actor nor partner influences
the sequence. The type is identified at the individual level.
The same analysis can be done on theman’s sequence. This
analysis is conducted on a unique dyad. However, in re-
search, it is more common to collect data on a sample of
individuals, or in this case, on a sample of dyads.

In unique case analysis, the focus is on examining intra-
dyad consistency to determine whether both members of
the dyad engage in similar types of interactions. The shift
from unique to multiple case analysis is rooted in the de-
sire to extend research questions and findings beyond in-
tra dyad analysis (Kenny et al., 2020). Embracing a mul-
tiple case analysis approach facilitates the formulation of
interdyadic research questions, such as understanding the
differences between dyads or determining the characteris-
tics common to individuals who share the same interaction
pattern.

Similarity and Dissimilarity in Dyadic Sequences

The question of similar behaviors in the dyadic sample
makes it possible to provide a more in-depth analysis than
that of individual’s interaction pattern. The focus can be
on the similarity of behaviour between both members of
the dyad, but also between each individual in the sample,
allowing for an intra and inter dyad analysis’ perspective.
Consequently, it is necessary to establish away of analyzing
the similarity (or dissimilarity) between the behaviors of
individuals summarized in probabilities transition matri-
ces. Two complementary approaches are used to visualise
and group similarities (Buja et al., 2008-06).

Multidimensional scaling (MDS) is used to visualize and
reduce the dimensionality of data while preserving the
pairwise similarity or dissimilarity relationships between
data points (Borg & Groenen, 1997). The aim is to provide
a low-dimensional representation of data points that main-
tains their relative distances or similarities as accurately as
possible (Buja et al., 2008-06). In other words, MDS is used
to create a visual representation that illustrates the mea-
sured distances between the transition matrices of each
pair of individuals within the sample. The graphical repre-
sentation provides an initial understanding of the level of
similarity between individuals. Clustering analysis is used
to group similar data points together based on certain char-
acteristics or features (James et al., 2021). It is a data anal-

ysis technique that is intended to group similar data points
together into clusters, in which points in the same cluster
are more similar to each other than to those in other clus-
ters (Hastie et al., 2009). The main goal of clustering is to
highlight inherent patterns or structures within a dataset
without requiring predefined labels (Hastie et al., 2009).
The application of the MDS and the clustering into categor-
ical dyadic sequences is intented to visualize and group the
individuals based on their probabilities transitionmatrices
because they contain all the information about the behav-
ior during the sequence.

Aims and Outline

The main goal of this article is to develop a methodology
to deal with a dyadic sample when the data are categorical
sequences. This work is centered on the concept of simi-
larity with the aim to identify, visualize and cluster indi-
viduals that share similar behavior. This approach com-
plements the identification of each individual’s interaction
patterns. The procedure focuses on the importance of tran-
sition probabilities in the transition matrix. It is impor-
tant to understand the impact of these probabilities on the
graphical representation and the grouping of individuals.
To develop this methodology, we will use multiple steps. To
facilitate this work, we will exclusively use simulated data.
In the initial section of the article, wewill provide an expla-
nation of the methodology, focusing on theoretical aspects
of MDS and clustering. We will also analyze the impact of
transition probabilities and its possible consequences on
the various analyses proposed. In the second part, we pro-
pose a complete illustration of the methodology applicable
for analyzing a sample of dyads. Finally, wewill summarize
the methodology and conclude with suggestions for future
improvements.

Multidimensional Scaling and Clustering Analysis on
Probabilities Transition Matrix

Theoretical aspects

Some Recall on Markov Chains Modeling for L-APIM

Markov chains can be adapted to model dyadic sequences
(Bollenrücher et al., 2023). The transitionmatrices are indi-
vidual and are represented as in Equation 1 for each indi-
vidual for a case with two possible states for the response,
as in the example proposed above. Although each individ-
ual possesses a distinct transition matrix, it is constructed
using conditional probabilities associatedwith the states in
which both members of the dyad were present at the pre-
vious time point. We use the following notations: T for the
length of the chains, t for any time measurement, S for the
number of possible states, and s for any state. In this arti-
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cle, S = 2 because the possible answers to the question are
yes or no.

1 2

TP =

(1, 1)
(1, 2)
(2, 1)
(2, 2)


p1|11
p1|12
p1|21
p1|22

p2|11
p2|12
p2|21
p2|22

 (1)

For to each interaction pattern, namely APM, AM, PM,
and IM, the structure of the transition matrix is different.
The interaction pattern can be defined using a likelihood
ratio test (LRT) (Bollenrücher et al., 2023).

Markov chains can be used tomodel the individuals’ be-
havior in a transitionmatrix. By conducting anLRT test, the
pattern of interaction derived from the APIM conceptual
model can be identified. However, it is important to note
that this information might necessitate additional analysis
because individuals who fall under the same interaction
typemay exhibit variations in their behavior. For example,
an individual may adopt a behavior oriented toward their
partner while responding yes or no to the given question.
The interaction pattern remains the same, but the transi-
tion probabilities are different. Equation 2 represents the
transition matrix for a PM. The PM implies that only the
state in which the partner was at time t − 1 is considered.
Consequently, lines 1 and 3 of Equation 2 are identical, as
are lines 2 and 4. Therefore, the number of degrees of free-
dom in this equation is two. This equation can be written
without conditional probabilities as in Equation 3, inwhich
pj can take any value between 0 and 1 and qj is defined
as 1 − pj . By forcing the transition probabilities to be the
same depending on whether the individual was in state 1
or 2 at t − 1, the degree of freedom falls to one, as shown
in Equation 4. Equations 5 and 6 illustrate cases in which
p1 ∈ (0.9, 0.1) and p2 ∈ (0.7, 0.3). Equations 7 and 8 illus-

trate the two distinct transition matrices that individuals
can employ in cases of reciprocity, depending onwhether p
takes on values of 0.9 or 0.1. Although all four equations in
the casewith twodegrees of freedomand the two equations
in the case with one degree of freedom represent partner-
oriented behavior, it is necessary to note that the transition
probabilities in these matrices are entirely distinct. Conse-
quently, the sequences corresponding to these matrices re-
flect different behavior. The individual could adopt an in-
teraction pattern other than the partner-oriented pattern.
The same kind of considerations about the matrices can be
made for the APM and AM patterns, as shown in the Ap-
pendix. Wewill only develop the partner case in the article
because it has fewermatrices than the APMwhile retaining
the dyadic aspect.

1 2

TPPM =

(1, 1)
(1, 2)
(2, 1)
(2, 2)


p1|·1
p1|·2
p1|·1
p1|·2

p2|·1
p2|·2
p2|·1
p2|·2

 (2)

Equations 3 and 4 reveal that the partner-oriented tran-
sition matrix can be represented in two different forms
depending on the number of degrees of freedom. Fur-
thermore, the illustrative matrices show that the transi-
tion probabilities can take various values, resulting in nu-
merous potential sequences. Hence, the key question cen-
ters around understanding how individuals in a sample of
dyads group together when they share the same interac-
tion pattern. Multidimensional scaling and clustering will
be used to complete the analysis of the pattern of interac-
tion. To assess the impact of the degree of freedom and the
probabilities transition, we will conduct two analyses ac-
cording to the degree of freedom and using various values

1 2

TPPM
df=2 =

(1, 1)
(1, 2)
(2, 1)
(2, 2)


p1
q2
p1
q2

q1
p2
q1
p2

 (3)

1 2

TPPM
df=1 =

(1, 1)
(1, 2)
(2, 1)
(2, 2)


p
q
p
q

q
p
q
p

 (4)

1 2

TPPM
p1=0.9,
p2=0.7

=

(1, 1)
(1, 2)
(2, 1)
(2, 2)


0.9
0.3
0.9
0.3

0.1
0.7
0.1
0.7

 (5)

1 2

TPPM
p1=0.1,
p2=0.3

=

(1, 1)
(1, 2)
(2, 1)
(2, 2)


0.1
0.7
0.1
0.7

0.9
0.3
0.9
0.3

 (6)

1 2

TPPM
p=0.9 =

(1, 1)
(1, 2)
(2, 1)
(2, 2)


0.9
0.1
0.9
0.1

0.1
0.9
0.1
0.9

 (7)

1 2

TPPM
p=0.1 =

(1, 1)
(1, 2)
(2, 1)
(2, 2)


0.1
0.9
0.1
0.9

0.9
0.1
0.9
0.1

 (8)
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of p. The first analysis is done for the simplest case, namely
the case with only one degree of freedom. The second anal-
ysis is done for the case with two degrees of freedom. The
matrices presented beforewill be used to simulate the data.
As they are represented only one pattern of interaction, we
expect that individuals will be grouped according to the
transition probabilities. Before delving into these analyses,
we first address some general considerations regarding the
two methods we employ.

Multidimensional scaling

MDS is a statistical technique used in data analysis and vi-
sualization to represent the similarity or dissimilarity be-
tween a set of objects or data points in a lower-dimensional
space (Borg & Groenen, 1997). It is essentially employed for
visualizing complex relationships and patterns. At the first
step, it is necessary to compute similarities or dissimilari-
ties between the points. These could be distances, dissimi-
larity scores or similarity measures. This information is or-
ganized into a distancematrix, which quantifies the dissim-
ilarity between each pair of objects in the dataset (Buja et
al., 2008-06). The matrix is symmetric with zeros on the di-
agonal. MSD aims to reduce the dimensionality of the data
while preserving the pairwise relationship as much as pos-
sible. The reduced-dimensional representation is used for
visualization in 2D or 3D. Objects that are similar in the
original dataset will be closer and those that are less simi-
lar will be farther. Hence, MDS is useful to understand the
underlying structure of data (Borg & Groenen, 1997). Dif-
ferent algorithms, namely metric or non metric algorithm,
exist to perform MDS depending on the nature of the data
and the objectives.

In this work, we will calculate the Euclidean dis-
tance between the probabilities transition matrices be-
tween each individual in the sample before performing
MDS to obtain a 2D representation of the individuals’ posi-
tion. To calculate the distance betweenmatrices, weuse the
dist function in R, and to calculate the multidimensional
scaling, we use the cmdscale function.

Clustering Analysis

Clustering is a fundamental concept in the field of data
analysis and machine learning that helps reveal underly-
ing structure in the data (James et al., 2021). It involves
the process of categorizing data into classes based on their
inherent attributes. It seeks to segment data points into
clusters, where data points within the same cluster exhibit
greater similarity to one another than to those residing in
another clusters (Crane, 2014). This grouping process is
driven by the notion that data points sharing similar char-
acteristics should be closer in terms of metrics (Hastie et
al., 2009). The distance metric measures the dissimilarity

between two data points (James et al., 2021). Multiple dis-
tance metrics exist. The most common are Euclidean dis-
tance, Manhattan distance, cosine similarity, and correla-
tion distance (James et al., 2021; Hastie et al., 2009; Kauf-
man & Rousseeuw, 2009-09). Various clustering algorithms
have been developed to address different types of data and
objectives. Each method has its own strengths and limita-
tions, making the choice of the appropriate algorithm de-
pendent on the nature of the data and the specific goals of
the analysis (Hastie et al., 2009). In this work, we use hier-
archical clustering because it does not require prior knowl-
edge about the number of clusters in the data, because it
generates a hierarchy of clusters that can be cut at various
levels.

Hierarchical clustering is the method used to group
similar data points into nested clusters in a hierarchical
manner using a tree-like structure (Kaufman&Rousseeuw,
2009-09). This tree-like structure is called a dendogram
(Hastie et al., 2009). This method can follow either an ag-
glomerative (bottom-up) or divisible (top-down) approach
(Cabezas et al., 2023). In the first case, each point in the
database represents a cluster and the clusters are progres-
sively grouped into larger clusters. In the second case, all
the points in the database are in a single cluster, which is
progressively split into smaller clusters. Visual analysis of
the dendrogram provides insights into how the clustering
algorithm operates on the data. Although it does not di-
rectly allow the optimal number of clusters to be chosen,
it offers a general understanding of the clustering struc-
ture (Hastie et al., 2009). To determine the optimal number
of clusters, additional factors need to be considered. The
first is an index analysis (Charrad et al., 2014-09). In R, the
NbClust library can be used to determine this number by
considering several indices (Charrad et al., 2014-10). The
second element is knowledge of the data, the assumptions
made, and the trade-off between clusters that are too large
or too small, which would compromise pattern discrimi-
nation. These elements can be enriched using the visual
analysis provids by the MDS. Besides the way in which the
cluster distance is calculated, theway inwhich the distance
between data points is calculated is also important. The op-
timal solution to cut the tree on the dendogram is linked
with the linkage method. It defines how the distances be-
tween clusters are computed during the process. Multiple
linkage methods exist such as single, complete, average,
andWard’s linkage (Hastie et al., 2009). Because the linkage
method determines how clusters are merged, the method’s
choice influences the clusters’ size (Ward, 1963-03).

We perform clustering on the probabilities’ distance
matrix obtained beforemultidimensional scaling. We have
chosen to useWard’s linkagemethod because it seems to be
themost appropriatemethod according to the data. Indeed,
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Figure 1 Multidimensional scaling map for partner-only interaction pattern with different probabilities transition ma-
trix.

(a)Map for p ∈ (0.9, 0.1) (b)Map for p ∈ (0.8, 0.2)

(c)Map for p ∈ (0.7, 0.3) (d)Map for p ∈ (0.6, 0.4)

it aims to create clusters that have minimal within-cluster
variance, which leads to internally consistent clusters in
term of probabilities. Moreover, Ward’s linkage often leads
to clusters that are easily interpretable. In R, we use the
classic hclust function to perform agglomerative cluster-
ing with the specification for the method, with method="
ward.D2".

Influence Transition Probabilities

Case with one degree of freedom

Equations 7 and 8 represent a situation in which the transi-
tion probabilities are notably distant from each other. Con-
sequently, the sequences exhibit minimal variation. Re-
turning to Equation 4, several cases and their reciprocals
can be constructed by setting different values for p. To
assess the impact of these transition probabilities’ on the

differentiation of individuals’ behavior, we will work with
simulated data to cover several possible scenarios, namely
p = 0.9, p = 0.8, p = 0.7, p = 0.6, as well as their recipro-
cals.
Simulation Design. The data are generated using the pro-
vided example, which involves the question Did you expe-
rience sexual desire yesterday? over a 90-day period. The
possible answers are yes or no. This gives us the following
data characteristics: T = 90 and S = 2. Each database is
simulated using 60 dyads.

For each of the four scenarios outlined earlier, we gen-
erate databases encompassing all possible matrix interac-
tions between the two individuals in a dyad. In the case of
p = 0.9 or p = 0.1, this entails creating databases in which
bothmembers possess a transitionmatrix akin to Equation
7, another set inwhich bothmembers have a transitionma-
trix similar to Equation 8, a third set in which women have
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Figure 2 Dendograms obtained during hierarchical clustering for partner-only interaction pattern with different prob-
abilities transition matrix.

(a)Dendogram for p ∈ (0.9, 0.1) (b)Dendogram for p ∈ (0.8, 0.2)

(c)Dendogram for p ∈ (0.7, 0.3) (d)Dendogram for p ∈ (0.6, 0.4)

a matrix resembling Equation 7 whereas men follow Equa-
tion 8, and lastly, a database reflecting the inverse of the
previous configuration.
Comparison for MDS. Figure 1 shows a visual represen-
tation of the four simulated scenarios. With these four dis-
tinct scenarios, the initial observation from the figure in-
dicates the existence of two groups instead of the antici-
pated four. The resulting hypothesis suggests that individ-
uals are grouped based on the values of p rather than on
combinations of transition matrices between the partners.
This hypothesis means that the partner’s only contribution
is in the creation of the transition matrix. Once this tran-
sition matrix is done, the main element is the value of the
transition probabilities. Moreover, it is evident that when
transition probabilities exhibit significant disparities, as in
the scenario presented in Figure 1a, two distinct groups of
data points emerge. These clusters gradually draw closer
together in the scenarios represented in Figures 1b and
1c, ultimately converging into essentially a single group
in Figure 1d. This graphical representation yields several
insights. First, it confirms the hypothesis that an addi-

tional analysis, complementary to the examination of in-
teraction types, allows for the identification of varying be-
haviors in the same interaction pattern. Second, it shows
that differentiation depends on the transition probabilities.
When these probabilities are very close, reflecting a highly
variable sequence, distinguishing between individuals be-
comes more challenging. In contrast, when the probabili-
ties are notably different, individuals become more distin-
guishable from one another. Third, this visual represen-
tation leads to the assumption that clustering analysis will
reveal two distinct clusters, effectively grouping individu-
als based on their transition probabilities. Moreover, it sug-
gests that clustermembership derived from these probabil-
ities will be more accurate when the probabilities exhibit
significant disparities.
Comparison for Clustering. In the cluster analysis, the
initial consideration is determining the appropriate num-
ber of clusters to apply. As mentioned previously, in the
context of hierarchical clustering, this number can often be
discerned by examining the dendrogram. Figure 2 shows
the dendograms for the four cases analyzed. It is evident
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Table 1 Table of cluster membership with respect to the structure of the transition probabilities when both members of
the dyad have a partner-only interaction pattern with a transition matrix with one degree of freedom

(a) Table of cluster membership with respect to the struc-
ture of the probabilities of transition for the case with
p = 0.9 and p = 0.1

pfm = 0.9 pfm = 0.9 pfm = 0.1 pfm = 0.1
psm = 0.9 psm = 0.1 psm = 0.9 psm = 0.1

Cluster 1 120 60 60 0
Cluster 2 0 60 60 120

(b) Table of cluster membership with respect to the struc-
ture of the probabilities of transition for the case with
p = 0.8 and p = 0.2

pfm = 0.8 pfm = 0.8 pfm = 0.2 pfm = 0.2
psm = 0.8 psm = 0.2 psm = 0.8 psm = 0.2

Cluster 1 120 60 60 0
Cluster 2 0 60 60 120

(c) Table of cluster membership with respect to the struc-
ture of the probabilities of transition for the case with
p = 0.7 and p = 0.3

pfm = 0.7 pfm = 0.7 pfm = 0.3 pfm = 0.3
psm = 0.7 psm = 0.3 psm = 0.7 psm = 0.3

Cluster 1 120 60 60 0
Cluster 2 0 60 60 120

(d) Table of cluster membership with respect to the struc-
ture of the probabilities of transition for the case with
p = 0.6 and p = 0.4

pfm = 0.6 pfm = 0.6 pfm = 0.4 pfm = 0.4
psm = 0.6 psm = 0.4 psm = 0.6 psm = 0.4

Cluster 1 114 69 66 17
Cluster 2 6 51 54 103

that in all scenarios, the most suitable number of clusters
is two. This is the same result as the one obtained using
the NbClustwith the index of Calinski and Harabasz. We
chose this index because it is one of the best performing
(Charrad et al., 2014-09).

After we establish the appropriate number of clusters,
the next step involves the analysis. In this context, each in-
dividual from the sample is assigned to a specific cluster.
This allocation allows for an initial visual exploration, fol-
lowed by an analysis of the relationship between the clus-
ter affiliation of each individual and the structure of their
respective transition matrix.

In Figure 3, the visual representation produced byMDS
displays amap inwhich data points are color coded accord-
ing to their assigned clusters. This visualization highlights
that the clustering analysis has grouped the individuals ac-
cording to their position on this map. Notably, in the first
three scenarios, a distinct lack of color overlap implies a
highly effective discrimination of individuals. In contrast,
in the last scenario, some red and blue data points overlap,
indicating that the discrimination is less effective.

Table 1 provides an overview of the number of individ-
uals across clusters, taking into account the transition ma-
trices of both members in the dyad. Examining the scenar-
ios, it becomes apparent that Cluster 1 predominantly com-
prises individuals with transition matrices characterized
by higher probabilities p, whereas Cluster 2mainly consists
of individuals with lower p values. To illustrate this with
the previous example, we consider the cases of p = 0.9 and
p = 0.1. Whenbothmembers of the dyad share a transition
matrix resembling Equation 7, they are assigned to Cluster
1. Conversely, when both members of the dyad possess a
transitionmatrix similar to Equation 8, they are assigned to

in Cluster 2. The same occurs true when the dyadmembers
exhibit differing matrices. If women have a matrix akin to
Equation 7 and men have one resembling Equation 8, the
individuals are separated into the two clusters according
to their matrix. Furthermore, the tables confirm the ob-
servations made with the visual analysis. In situations in
which clusters are well separated, there is no misassign-
ment. The overlapping points of Figure 3d are represented
with the misassignement in Table 1d. Cluster 1 still pre-
dominantly encompasses transition matrices with high p
values (p = 0.6) but also includes some individuals with
low p (p = 0.4). A similar analysis applies to the second
cluster. This indicates that the closer the transition prob-
abilities are to 1

2 , the more challenging it becomes for the
cluster analysis to distinguish between individuals.

In the case of one degree of freedom, the clustering
analysis reveals that individuals tend to cluster based on
their transition probabilities. This highlights that the com-
bination of the dyads is not relevant. The next step is to
show how clustering works when transition matrices have
two degrees of freedom. The same analysis as previously
proposed is conducted on a single scenario.

Case with two degrees of freedom

For the analysis with two degrees of freedom, we use the
same case as before, namely transition matrices with part-
ner interaction pattern. Equations 5 and 6 represent a case
with two degrees of freedom. In Equation 5 p1 = 0.9, and
p2 = 0.7 and in Equation 6 the counterpart is used with
p1 = 0.1, and p2 = 0.3. We will use these matrices to sim-
ulate the data used for the analysis of clustering.
Simulation Design. The data are generated using the pro-
vided example, which involves the questionDid you experi-
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Figure 3 Clusters obtained from hierarchical clustering represented on the multidimensional scaling map for partner-
only interaction pattern with different probabilities transition matrix. For each case, the red cluster groups together the
individuals with the highest p value and the blue cluster those with the lowest p value.

(a)Map for p ∈ (0.9, 0.1) (b)Map for p ∈ (0.8, 0.2)

(c)Map for p ∈ (0.7, 0.3) (d)Map for p ∈ (0.6, 0.4)

ence sexual desire yesterday? over a 90-day period. The the
possible answers are yes or no. This gives us the following
data characteristics: T = 90 and S = 2. Each database
is simulated using 60 dyads. As for the case with only one
degree of freedom, the database is generated with the in-
teraction of the transition matrix for the women and the
men. The outcomes are very similar to the one obtained
with only one degree of freedom.
Analysis. Figure 4 shows themap from theMDS. There are
essentially two groups with a few points further apart. Fol-
lowing a similar rationale as with one degree of freedom,
we can assume that the data will segregate into two main
groups.

Both the dendrogram, shown in Figure 5, and the algo-
rithmic assessment of the optimal number of clusters lead

to the same conclusion: The data can be divided into two
clusters. To advance the analysis and determine the clus-
ter allocation for each individual, it is necessary to create a
database with all this information. Once this step is accom-
plished, it is possible to color the map obtained with the
MDS and analyze the constitution of the clusters according
to the transition probabilities.

Figure 6 highlights that the clustering analysis has
grouped the individuals according to their position with-
out any overlap. Table 2 shows that the constitution of
the probabilities transitionmatrix is decisive for clustering
membership. Cluster 1 contains individuals with a tran-
sition matrix like Equation 5, whereas individuals with a
transition matrix like Equation 6 are found in the second
cluster.
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Figure 4 Multidimensional scaling map for partner-
only interaction pattern for the case with two degrees
of freedom.

Figure 5 Dendogram obtained during hierarchical
clustering for partner-only interaction pattern with
two degrees of freedom

Figure 6 Clusters obtained from hierarchical clustering represented on the multidimensional scaling map for partner-
only interaction pattern with two degrees of freedom

Lessons from Validation

Our starting point was the hypothesis that individuals, de-
spite adopting the same interaction pattern, might exhibit
variations in behavior. These differences are reflected in
the transition probabilities that constitute the transition
matrix. The proposed analyses have demonstrated that the
clustering of individuals depends on the probabilities of
transition, even if these individuals share the same inter-
action’s pattern. Whereas the structure of the transition
matrix provides insights into interaction pattern the indi-
viduals adopt, the transition probabilities in the matrix al-
lows for the grouping together individuals who behave in
the same way. These analyses are therefore complemen-
tary. Several approaches can be used, depending on the

research questions or the results obtained. The clustering
analysis can be conducted on the entire database or on a
subsection exhibiting a particular type. Comparable find-
ings can be drawn if an individual adopts any of the alter-
native interaction patterns.

Once individuals have been assigned to clusters, it is
important to understand which transition matrix groups
these individuals together. Various techniques can be em-
ployed for this purpose, such as identifying the transition
matrix of the individual situated at the cluster’s center or
computing an average transition matrix derived from the
transition matrices of all individuals in the cluster (Hastie
et al., 2009). In this work, we use the average transitionma-
trix to understand individuals behavior.

Similar results can be obtained with the other patterns
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Table 2 Table of cluster membership with respect to the structure of the transition probabilities when both members of
the dyad have a partner-only interaction pattern with a transition matrix with two degrees of freedom

p1fm = 0.9 p1fm = 0.9 p1fm = 0.1 p1fm = 0.1
p2fm = 0.7 p2fm = 0.7 p2fm = 0.3 p2fm = 0.3
p1sm = 0.9 p1sm = 0.1 p1sm = 0.9 p1sm = 0.1
p2sm = 0.7 p2sm = 0.3 p2sm = 0.7 p2sm = 0.3

Cluster 1 120 60 60 0
Cluster 2 0 60 60 120

of interaction. The transition matrices with one degree
of freedom for the APM and APM can be found in the
Appendix. We also provide comments explaining how to
adapt them based on the degrees of freedom.

In this part, we employed a simulation case in which
individuals’ interaction patterns were known. In actual re-
search analysis, these patterns are unknown and must be
identified. The forthcoming illustration outlines the prac-
tical application of our methodology: first identifying the
interaction patterns and then analyzing the groupings of
individuals.

Illustration

Database

The database contains n = 120 heterosexual dyads who
answered the question Did you have sexual desire yester-
day with two possible answers either yes or no for 90 con-
secutive days. We recoded the responses as follows: yes is
recoded as 1, and no is recoded as 2. The aim of our analy-
sis is to model these data using L-APIM andMarkov chains.
Initially, the aim will be to identify the interaction pattern
adopted by the individuals in this database and, secondly,
to analyze how the individuals group together.

Analysis

We identify the type by conducting a LRT (Bollenrücher et
al., 2023). The underlying aim was to identify whether in-
dividuals are focused on themselves, their partner, or both
when they respond. This table summarizes the information
obtained from the test:

AM APM PM IM
114 37 56 33

The majority of people in the database seem to adopt a be-
havior that is focused solely on themselves. In other words,
they exhibit an AM interaction pattern. This was followed
by partner-oriented behavior and behavior based on inter-
action between the two. We noted that some individuals
follow an IM pattern of interaction. This means that these
are individualswho have the same probability of transition
regardless of their state at the previous time and of their

partner state. In other words, they behave as if the previ-
ous time did not affect their response at time t.

The visual representation of individuals through MDS,
shown in Figure 7a, reveals the presence of three primary
groups. Whereas two of these groups are relatively com-
pact, the third appears more scattered, suggesting the pos-
sibility of further division into subgroups. This hypothesis
is close to that of four clusters that could be made by ana-
lyzing the dendogram in Figure 7b. The use of algorithmic
analysis of the optimal number of clusters goes further is
proposed to work with five clusters. This corresponds to
a separation that can be observed by examining the den-
drogram from a top-down perspective. The initial division
cleaves the figure into two parts along the first coordinate.
Upon closer examination of the right branch of the den-
drogram, we found the two clusters on the left, whereas
the left branch of the dendrogram reveals the separation
of the cluster on the right into three distinct groups. Figure
7c shows that clustering distributes individuals according
to their position on this map. Notably, there is no over-
lap of points in the blue and pink clusters, in contrast to
the other three clusters, in which some overlap is evident.
Given that clustering relies on transition probabilities, it is
possible to assume that individuals belonging to the pink
and blue clusters exhibit transition probabilities that dif-
fer significantly from those in the other clusters. On the
other hand, the red, purple, and green clusters are more
likely to contain individuals with transition probabilities
that closely resemble each other.

Analysis of the distribution of interaction patterns in
the clusters reveals distinct patterns. Clusters 1 and 5 pre-
dominantly consist of individualswith a self-oriented inter-
action, whereas Cluster 3 is primarily composed of individ-
uals displaying a partner-oriented interaction. Individuals
who exhibit APM are primarily concentrated in Cluster 3,
whereas the IM ismore prevalent in Cluster 4. Based on this
distribution, we can assume that the average transitionma-
triceswithin clusters are likely to exhibit a structure closely
related to the predominant interaction type found in each
cluster. Additionally, it is expected that two of the clusters
will have transition matrices characteristic of the AM. Fur-
thermore, the transition matrix of Cluster 4 should demon-
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Figure 7 Multidimensional scalingmap for partner-only interaction patternwith different probabilities transitionmatrix

(a)Map from the multidimensional scaling (b)Dendogram from the hierarchical clustering

(c)Map from the multidimensional scaling colored with re-
spect to the clusters

strate small variations in its columns, indicating a case in
which the probabilities of transition are not related to the
previous state.

Equations 9 to 13 are the average transition matrices,
with in green the probabilities p when the degree of free-
dom is one or pj when they are two. Equations 9 to 13
represent the average probabilities transition matrices for
each cluster. The purpose of analyzing these matrices is
to gain insights into the behavior of individuals in these
clusters. In the case of the first and fifth clusters, both ex-
hibit an actor-only structure. In the first cluster’s matrix,
we observe that if an individual responded affirmatively
in the previous state, there is a higher probability of them
responding positively at time t+1 and conversely for neg-
ative responses. We can approximate the probability, p, to
be around 0.7, resulting in amatrixwith one degree of free-

dom. Cluster 5 also exhibits an actor-only structure, as an-
ticipated. However, the individuals in this cluster behave
differently from those in cluster 1. This matrix has two de-
grees of freedom with p1 at 0.2 and p2 at 0.1. Notably, if
individuals answered positively at time t, they have a high
probability of responding negatively at time t+ 1 and vice
versa if they answered negatively at time t. Analyzing these
two matrices highlights the point we previously raised: In-
dividuals of the same interaction type can have distinct be-
haviors within that pattern. Cluster matrix 2 is the only
one with a partner-only structure. It possesses only one de-
gree of freedom, with p equal to 0.1, resulting in clearly
separated transition probabilities. Cluster 3 represents an
actor-partner matrix with one degree of freedom. In this
case, individuals in the cluster tend to respond positively
at time t + 1 if they answered affirmatively at time t, ex-
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Table 3 Table with cluster’s effective with respect to each pattern of pattern of interaction

AM APM PM IM
Cluster 1 50 2 0 8
Cluster 2 0 6 54 0
Cluster 3 6 27 2 2
Cluster 4 0 0 0 23
Cluster 5 58 2 0 0

cept when both individuals answered negatively, in which
case the predominant response at time t+1 is negative. The
structure of matrix 4 closely resembles that of matrix 3, ex-
cept that the transition probabilities in case (2, 2) are less
distinct, which iswhy this type is identified as independent.

The analysis of interaction types and the average transi-
tion matrices resulting from clustering enabled us to iden-
tify several types of behavior in the sample of dyads. It
becomes evident that the sample includes representations
of the three main types of interaction as well as the less
common independence type. Those exhibiting actor-only
behavior tend to display two distinct behavioral tenden-
cies whereas individuals with partner-only behavior ex-
hibit similar patterns of behavior. In contrast, individu-
als with an actor-partner pattern have two different ten-
dencies when both individuals answer no to the question
asked.

Conclusion and Further Directions

By applyingMarkov chainsmodeling to examine dyadic se-
quences modeled by L-APIM, it is possible to identify the
types of interaction pattern each individual adopts. How-
ever, the assignment of types does not offer a complete un-
derstanding of individual behavior. Therefore, it is neces-
sary to investigate the similarities among individuals in a
dyadic sample. Our article provides a comprehensive ex-
planation of how multidimensional scaling and clustering
analysis can be used to represent and identify group of
individuals that shared similar behavior. In addition, we

include a step-by-step tutorial in R language to allow for
the practical application of the complete methodology. The
methodology proposed for the analysis of dyadic categori-
cal sequences modeled with L-APIM can be succinctly out-
lined as follows:
1. Identification of interaction types using the LRT test.
2. Computation of transition probabilities and creation of

a distance matrix.
3. Visualization of individuals in a 2D map through mul-

tidimensional scaling.
4. Hierarchical clustering and determination of the op-

timal number of clusters utilizing the algorithm the
NbClust library provides.

5. Coloring the map based on clustering results, cluster
analysis, and computation of average transition matri-
ces.
We theoretically elaborated on these steps in the valida-

tion and illustrative sections, and the corresponding codes
we provide in the Appendix.

The proposed methodology needs to be applied to em-
pirical data from dyadic studies based on observational
coding or questionnaires. Furthermore, when a survey is
administered, it is generally common for individuals to be
asked several questions. Consequently, our methodology
needs to be developed further to consider the behavior of
several individuals in response to several questions and to
understand what type of analysis and conclusions can be
obtained.

1 2

TPCluster1 =

(1, 1)
(1, 2)
(2, 1)
(2, 2)


0.693
0.671
0.322
0.322

0.307
0.329
0.678
0.678

 (9)

1 2

TPCluster2 =

(1, 1)
(1, 2)
(2, 1)
(2, 2)


0.110
0.882
0.118
0.891

0.890
0.118
0.882
0.109

 (10)

1 2

TPCluster3 =

(1, 1)
(1, 2)
(2, 1)
(2, 2)


0.892
0.895
0.874
0.083

0.108
0.105
0.126
0.917

 (11)

1 2

TPCluster4 =

(1, 1)
(1, 2)
(2, 1)
(2, 2)


0.902
0.922
0.936
0.565

0.098
0.078
0.064
0.435

 (12)

1 2

TPCluster5 =

(1, 1)
(1, 2)
(2, 1)
(2, 2)


0.195
0.193
0.889
0.906

0.805
0.807
0.111
0.094

 (13)
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Appendix

Transitionmatrix with one degree of freedom for the actor-only pattern of interaction. Equation A.1 represents the
transition matrix with the actor-only pattern of interaction using the conditional transition probabilities. Equation A.2
is the same equation without the conditional probabilities and with only one degree of freedom. As for the partner-only
case, a transition matrix can be written with two degrees of freedom.

1 2

TPAM =

(1, 1)
(1, 2)
(2, 1)
(2, 2)


p1|1·
p1|1·
p1|2·
p1|2·

p2|1·
p2|1·
p2|2·
p2|2·

 (A.1)

1 2

TPAM
df=1 =

(1, 1)
(1, 2)
(2, 1)
(2, 2)


p
p
q
q

q
q
p
p

 (A.2)

Transitionmatrix with one degree of freedom for the actor-partner pattern of interaction. Equation A.3 represents
the transition matrix with the actor-partner pattern of interaction using the conditional transition probabilities. In con-
trast to the actor-only and partner-only cases, the equation for the actor-partner interaction pattern can be expressed in
various forms without conditional probability and with one degree of freedom. Equations A.4 or A.8 depict the various
possibilities, and each of these transition matrices can be formulated with different degrees of freedom.

1 2

TPAPM =

(1, 1)
(1, 2)
(2, 1)
(2, 2)


p1|11
p1|12
p1|21
p1|22

p2|11
p2|12
p2|21
p2|22

 (A.3)

1 2

TPAPM
df=1 =

(1, 1)
(1, 2)
(2, 1)
(2, 2)


p
p
p
q

q
q
q
p

 (A.4)
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1 2

TPAPM
df=1 =

(1, 1)
(1, 2)
(2, 1)
(2, 2)


p
p
q
p

q
q
p
q

 (A.5)

1 2

TPAPM
df=1 =

(1, 1)
(1, 2)
(2, 1)
(2, 2)


p
q
q
q

q
p
p
p

 (A.6)

1 2

TPAPM
df=1 =

(1, 1)
(1, 2)
(2, 1)
(2, 2)


p
q
p
p

q
p
q
q

 (A.7)

1 2

TPAPM
df=1 =

(1, 1)
(1, 2)
(2, 1)
(2, 2)


p
q
q
p

q
p
p
q

 (A.8)

Comments on code 1: identification of the interaction pattern This code corresponds to the initial step mentioned
in the methodology summary, which focuses on type identification. The FunctionsFiles file is a R file containing
all the functions needed to analyze categorical dyadic sequences with Markov chains. Following the loading of this file,
the database must be loaded as well. Subsequently, the interaction type is detected and stored in a vector, which is then
appended to the database. The grouped data can be used to assess the count of individuals falling into each identified
pattern type.

Listing 1: Identification of the interaction pattern
source("FunctionsDyadicMarkov.R")
load(data.RData)
typeTest <- vector()
for(i in unique(data$dyad)){

fm <- as.numeric(data[data$dyad==i & data$members=="FM",1:90])
sm <- as.numeric(data[data$dyad==i & data$members=="SM",1:90])
fm.test <- intType(states = s, FM = fm, SM = sm, alpha = 0.05)
sm.test <- intType(states = s, FM = sm, SM = fm, alpha = 0.05)
typeTest <- append(typeTest, c(fm.test$type, sm.test$type))

}
data$typeTest <- typeTest
table(data$typeTest)

Comments on code 2: extraction of the probabilities and computation of the distance matrix. Based on the dataset,
the transition probability vector of each individual is extracted directly from its matrix, which is initially estimated from
the count matrix. The dist function is the function used to calculate the Euclidean distance between matrices.

Listing 2: Probabilities transition matrix and distance matrix
Prob <- NULL
for(d in 1:(nrow(data)/2)){

p1 <- c(mleEstimation(countEmp(s, as.numeric(unlist(data[(2*d - 1), 1:tm])),
as.numeric(unlist(data[(2*d), 1:tm])))))

p2 <- c(mleEstimation(countEmp(s, as.numeric(unlist(data[(2*d), 1:tm])),
as.numeric(unlist(data[(2*d - 1), 1:tm])))))

Prob <- rbind(rbind(Prob, p1), p2)
}
dissMat <- dist(as.data.frame(Prob))
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Comments on code 3: multidimensional scaling map. The multidimensional scaling is computed directly on the dis-
tance matrix with the classic function cmdscale. The coordinates are extracted from the object. Then, the plot can be
made. This plot represents the individuals on a map.

Listing 3: Multidimensional scaling map
cmd <- cmdscale(dissMat, eig = TRUE, k = 2)
x <- cmd$points[,1]
y <- cmd$points[,2]
plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2", asp = 1)

Comments on code 4: clustering. The hclust function is used to obtain the hierarchical clustering dendogram. Sub-
sequently, the tree is cut according to the number of clusters required. To calculate the optimal number of clusters, the
NbClust library needs to be loaded. This library includes an algorithm designed to identify the optimal number of clus-
ters. As mentioned previously, the function can consider several linking methods and optimality indices. The references
given for this library may be useful for modifying these arguments. Finally, the cluster membership vector is added to
the database to facilitate analysis.

Listing 4: Number of clusters
library(NbClust)
optimalClust <- NbClust(as.data.frame(Prob), dist(as.data.frame(Prob),

method = "euclidean"), distance = NULL, method = "ward.D2", index = "ch")
optimalClust$Best.nc[1]
optimalNb <- optimalClust$Best.nc[1]
res <- hclust(dissMat, method = "ward.D2")
plot(res, labels = FALSE, hang = -1, xlab = "Clusters")
clust <- cutree(res, optimalNb)
data <- cbind(data, cluster = clust)

Comments on code 5: clusters analysis and mean transition matrix. Several analyses need to be conducted once the
clustering has been completed. The first step is to introduce color coding based on clusters in the visualmap of individuals.
This coloring allows to see whether the clusters are well separated from each other or whether there are overlaps. The
second step it to assess the distribution of clusters concerning interaction types. This examination is conducted to identify
potential patterns associated with various interaction types. The third step is to compute the average transition matrices
and to analyze them. The matrices are rounded to three and one digits to facilitate the analysis of the degree of freedom.

Listing 5: Analysis of the clusters and mean probabilities transition matrix
table(data$cluster, data$typeTest)
plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2", asp = 1,

col = c("red", "blue", "green", "purple", "pink")[data$cluster])
legend(x = "topright",

legend = c("Cluster 1", "Cluster 2", "Cluster 3", "Cluster 4", "Cluster 5"),
col = c("red", "blue", "green", "purple", "pink"), pch = 16)

completeData <- cbind(data, as.data.frame(Prob))
meanTPC1 <- matrix(apply(completeData[completeData$cluster==1,

(ncol(completeData)-8+1):ncol(completeData)], 2, FUN = mean),
ncol = 2, byrow = FALSE)

meanTPC2 <- matrix(apply(completeData[completeData$cluster==2,
(ncol(completeData)-8+1):ncol(completeData)], 2, FUN = mean),
ncol = 2, byrow = FALSE)
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meanTPC3 <- matrix(apply(completeData[completeData$cluster==3,
(ncol(completeData)-8+1):ncol(completeData)], 2, FUN = mean),
ncol = 2, byrow = FALSE)

meanTPC4 <- matrix(apply(completeData[completeData$cluster==4,
(ncol(completeData)-8+1):ncol(completeData)], 2, FUN = mean),
ncol = 2, byrow = FALSE)

meanTPC5 <- matrix(apply(completeData[completeData$cluster==5,
(ncol(completeData)-8+1):ncol(completeData)], 2, FUN = mean),
ncol = 2, byrow = FALSE)

round(meanTPC1, digits = 3)
round(meanTPC2, digits = 3)
round(meanTPC3, digits = 3)
round(meanTPC4, digits = 3)
round(meanTPC5, digits = 3)
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